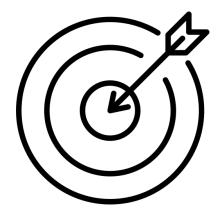
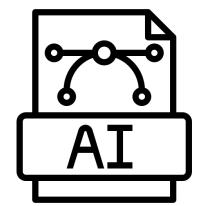
Monitoring ML experiments with Weights & Biases

Tutorial 3 Sungho Bae

Goal

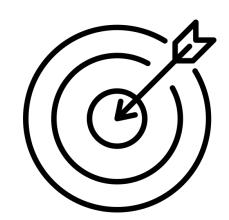


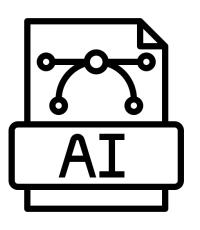


Goal

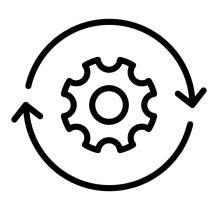
Model

Q. Have you ever done **train/valid metric monitoring** in Jupyter Notebook or colab as follows?





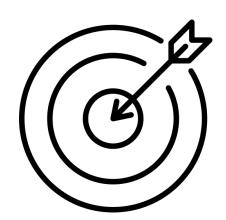
Model

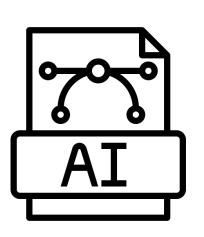


Experiments

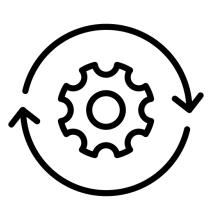
a lots of,,,,,

Q. Have you ever struggled to **compare and navigate the results** and experiences for each experiment?



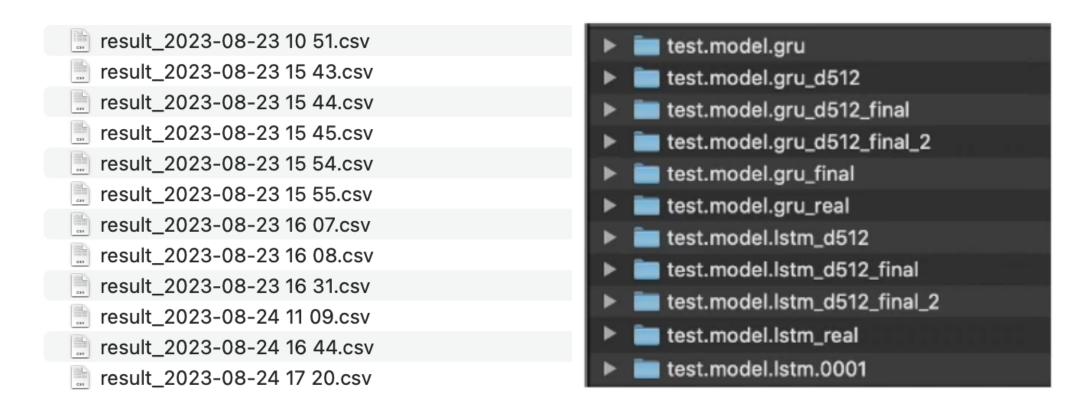


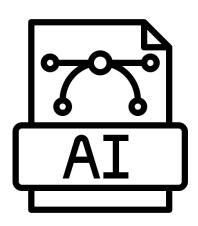
Model

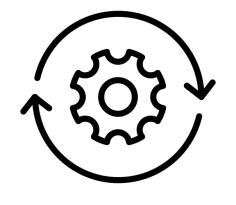


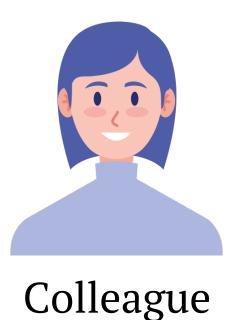
Experiments

a lots of,,,,,



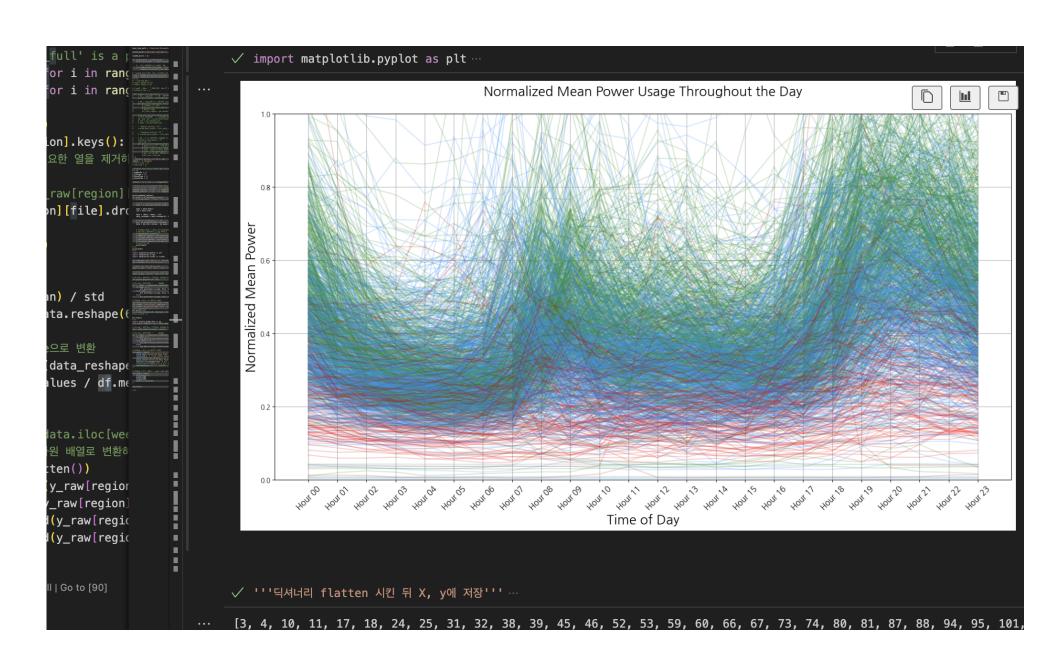


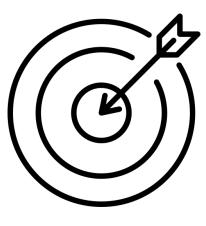


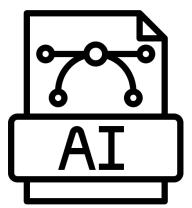


Model

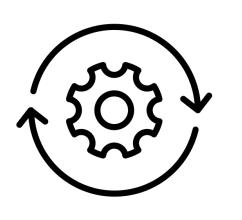
Experiments a lots of,,,,,







Model

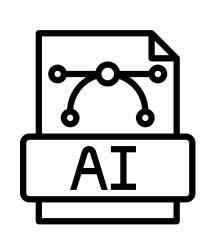


Experiments

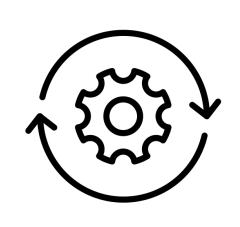
a lots of,,,,,

Adjust **hyperparameters**, verify models and data, monitor Gradient flow and GPU systems, and more...

there's a lot to consider.



Model



Experiments

a lots of,,,,,

Adjust **hyperparameters**, verify models and data, monitor Gradient flow and GPU systems, and more...

JUST WITH 5 LINES?

```
import wandb
# 1. Start a New run
wandb init(project="gpt-3")
# 2. Save model inputs and hyperparameters
config = wandb config
config learning_rate = 0.01
# 3. Log gradients and model parameters
wandb.watch(model)
for batch_idx, (data, target) in enumerate(train_loader):
  if batch_idx % args.log_interval == 0:
  # 4. Log metrics to visualize performance
  wandb log({"loss": loss})
```

Those who don't track training are doomed to repeat it.

From. Weights & Biases.

Ch1. What is Wandb?

Weights & Biases

What is Wandb?

Ch1. What is Wandb?

Weight & Bias?

A tool to easily track and visualise the progress

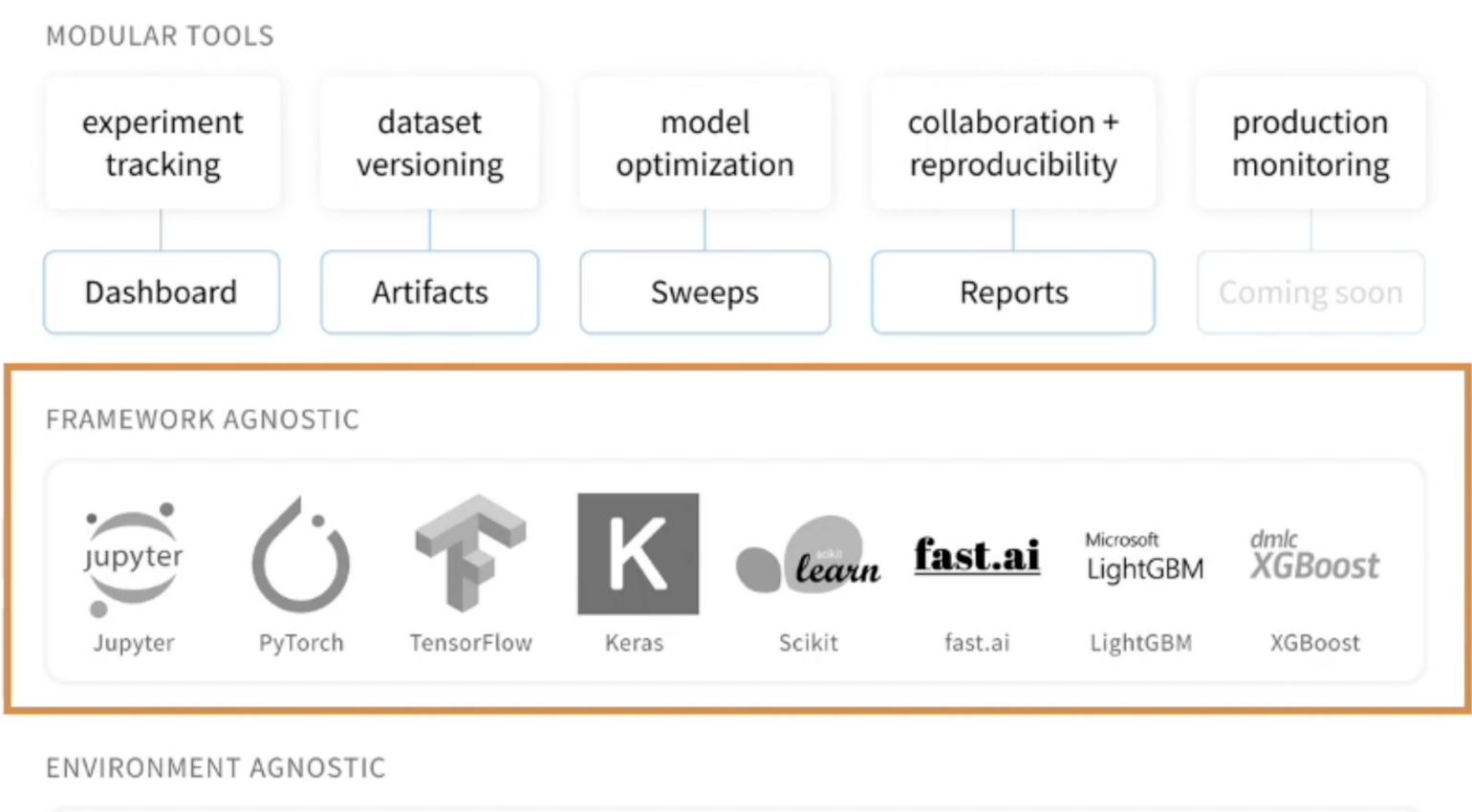
of your deep learning experiments

W (weights) & b (bias),

commonly used in deep learning, called wandb for short

Can be **integrated with various frameworks**such as pytorch, tensorflow, keras, huggingface, etc.

Ch1. What is Wandb?



What Wandb can do?

- Save the hyper-parameters used during training
- Explore, compare, and visualise each experiment
- Analyse systems in the learning environment
- Collaborate with others
- Replicate the results of past experiments
- Allows hyper-parameter tuning
- Permanently store a record of all your experiments

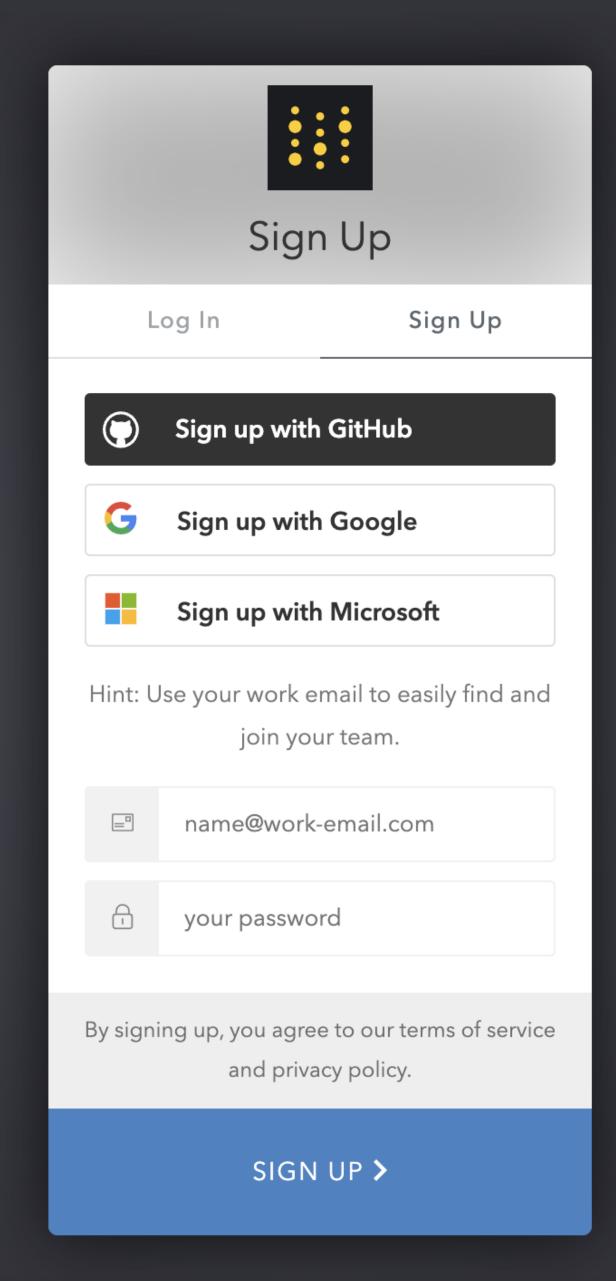
What Wandb can do?

- Save the hyper-parameters used during training
- Explore, compare, and visualise each experiment
- Analyse systems in the learning environment
- Collaborate with others
- Replicate the results of past experiments
- Allows hyper-parameter tuning
- Permanently store a record of all your experiments

Weights & Biases

Wandb Tutorial

Ch2. tutorial for wandb Sign Up & Setting



https://kr.wandb.ai/

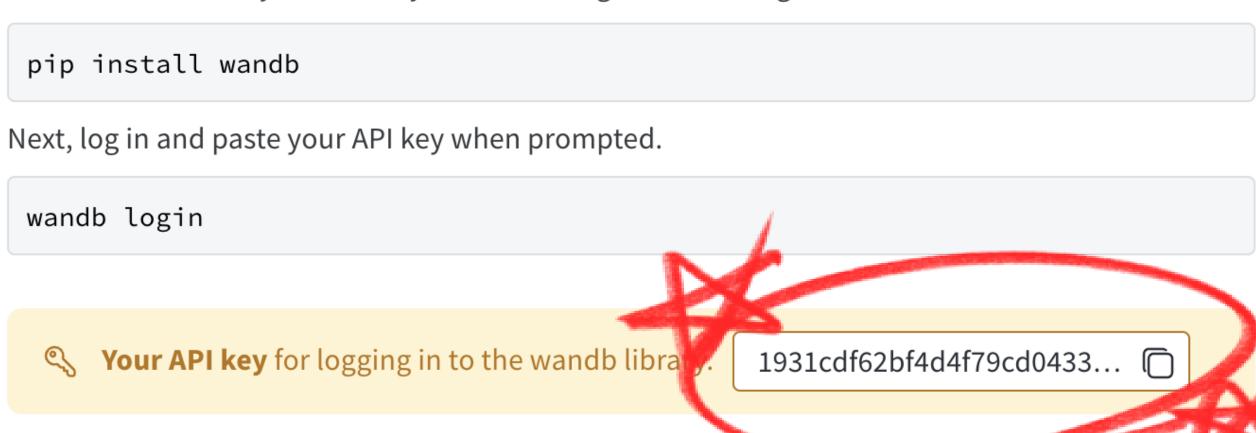
Quickstart: Tracking your first run in Weights & Biases

Weights & Biases' tools make it easy for you to quickly track experiments, visualize results, spot regressions, and more. Simply put, Weights & Biases enables you to build better models faster and easily share findings with colleagues.

Visualize your model training with

1. Set up the wandb library

Install the CLI and Python library for interacting with the Weights and Biases API.



- Run an experiment
- 1. Start a new run and pass in hyperparameters to track
- 2. Log metrics from training or evaluation
- 3. Visualize results in the dashboard

wandb.finish()

```
import random
    # Launch 5 simulated experiments
    total_runs = 5
    for run in range(total_runs):
      # 👊 🔟 Start a new run to track this script
      wandb.init(
          # Set the project where this run will be logged
          project="basic-intro",
          # We pass a run name (otherwise it'll be randomly assigned, like sunshine-lollypop-10)
          name=f"experiment_{run}",
          # Track hyperparameters and run metadata
          config={
          "learning_rate": 0.02,
          "architecture": "CNN",
          "dataset": "CIFAR-100",
          "epochs": 10,
      # This simple block simulates a training loop logging metrics
      epochs = 10
      offset = random.random() / 5
      for epoch in range(2, epochs):
          acc = 1 - 2 ** -epoch - random.random() / epoch - offset
          loss = 2 ** -epoch + random.random() / epoch + offset
          # 🙀 🔼 Log metrics from your script to W&B
          wandb.log({"acc": acc, "loss": loss})
      # Mark the run as finished
```

doesn't actually train the model.

Just a sample code that simply shows

what **ACC and LOSS graph** look like at Wandb Page

```
#  2 Log metrics from your script to W&B
wandb.log({"acc": acc, "loss": loss})

# Mark the run as finished
wandb.finish()
```

wandb: Currently logged in as: oy6uns (ow6uns (eam). Use `wandb login --relogin` to force relogin

Tracking run with wandb version 0.16.5

Run data is saved locally in /content/wandb/run-2 1080837-av2dpar6

Syncing run experiment_0 to Weights & Biases (docs)

View project at https://wandb.ai/oy6uns_team/basic-intro

View run at https://wandb.ai/oy6uns_team/basic-intro/runs/av2dpar6/workspace

Run history:

loss

Run summary:

acc 0.90902

loss

0.11327

View run experiment_0 at: https://wandb.ai/oy6uns_team/basic-intro/runs/av2dpar6/workspace

Synced 4 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)

Find logs at: ./wandb/run-20240401_080837-av2dpar6/logs

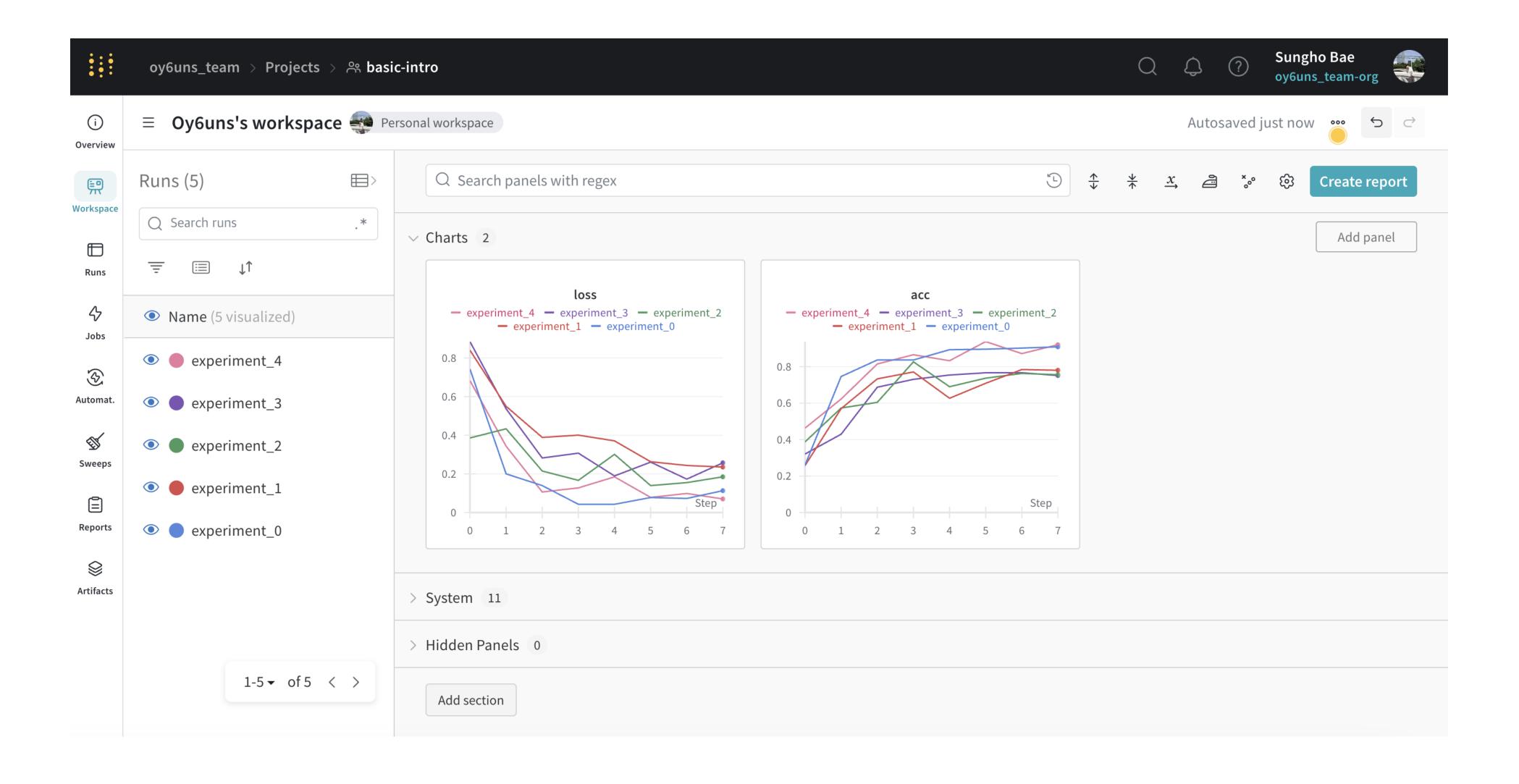
Tracking run with wandb version 0.16.5

Run data is saved locally in /content/wandb/run-20240401_080842-8lyllfgy

Syncing run experiment_1 to Weights & Biases (docs)

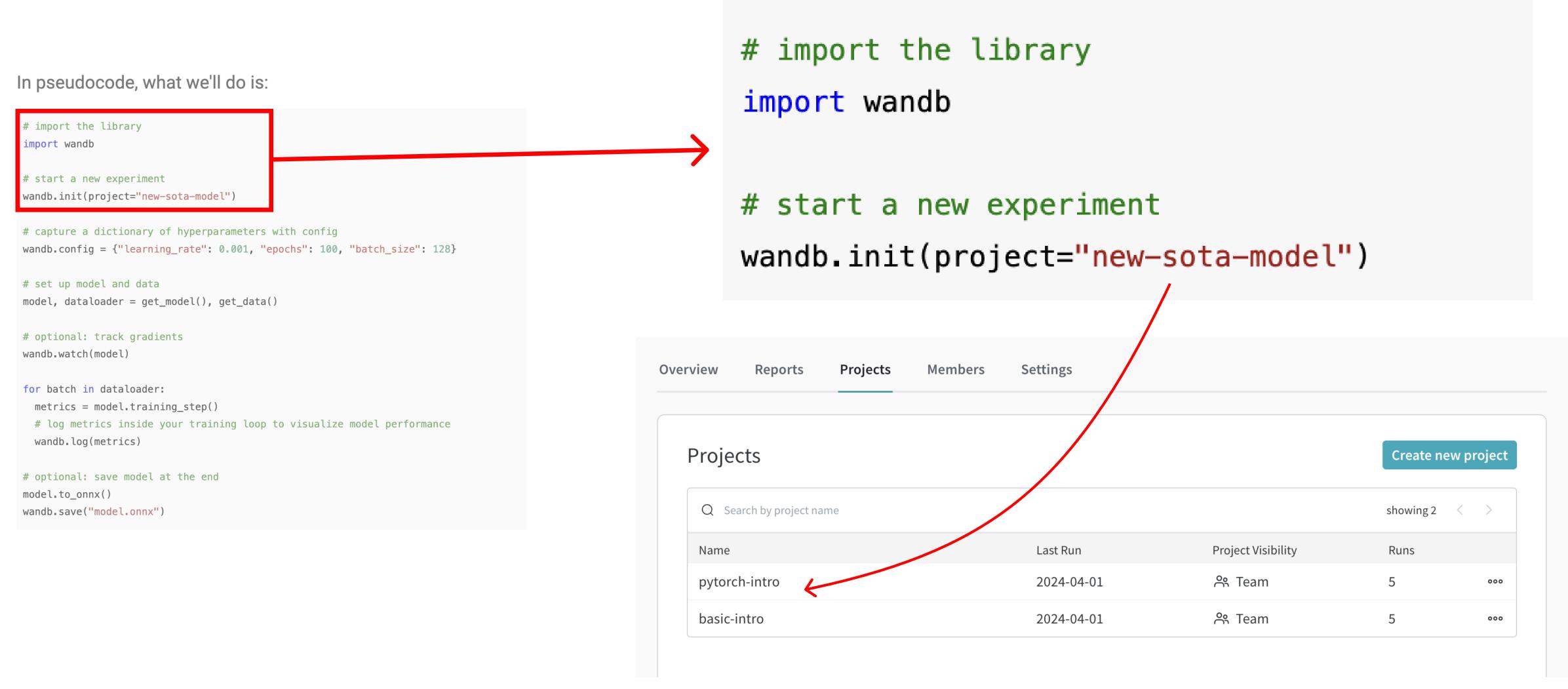
View project at https://wandb.ai/oy6uns_team/basic-intro

View run at https://wandb.ai/oy6uns_team/basic-intro/runs/8lyllfgy/workspace



Weights & Biases

Wandb + PyTorch Tutorial



The project name you set will be displayed on the wandb homepage

```
In pseudocode, what we'll do is:
# import the library
 import wandb
 # start a new experiment
 wandb.init(project="new-sota-model")
# capture a dictionary of hyperparameters with config
 wandb.config = {"learning_rate": 0.001, "epochs": 100, "batch_size": 128}
 # set up model and data
 model, dataloader = get_model(), get_data()
 # optional: track gradients
 wandb.watch(model)
 for batch in dataloader:
  metrics = model.training_step()
  # log metrics inside your training loop to visualize model performance
  wandb.log(metrics)
 # optional: save model at the end
 model.to_onnx()
 wandb.save("model.onnx")
```

```
# capture a dictionary of hyperparameters with config
wandb.config = {"learning_rate": 0.001, "epochs": 100, "batch_size": 128}
```

Declare the model's hyperparameters in the python dictionary type

In pseudocode, what we'll do is:

model.to_onnx()

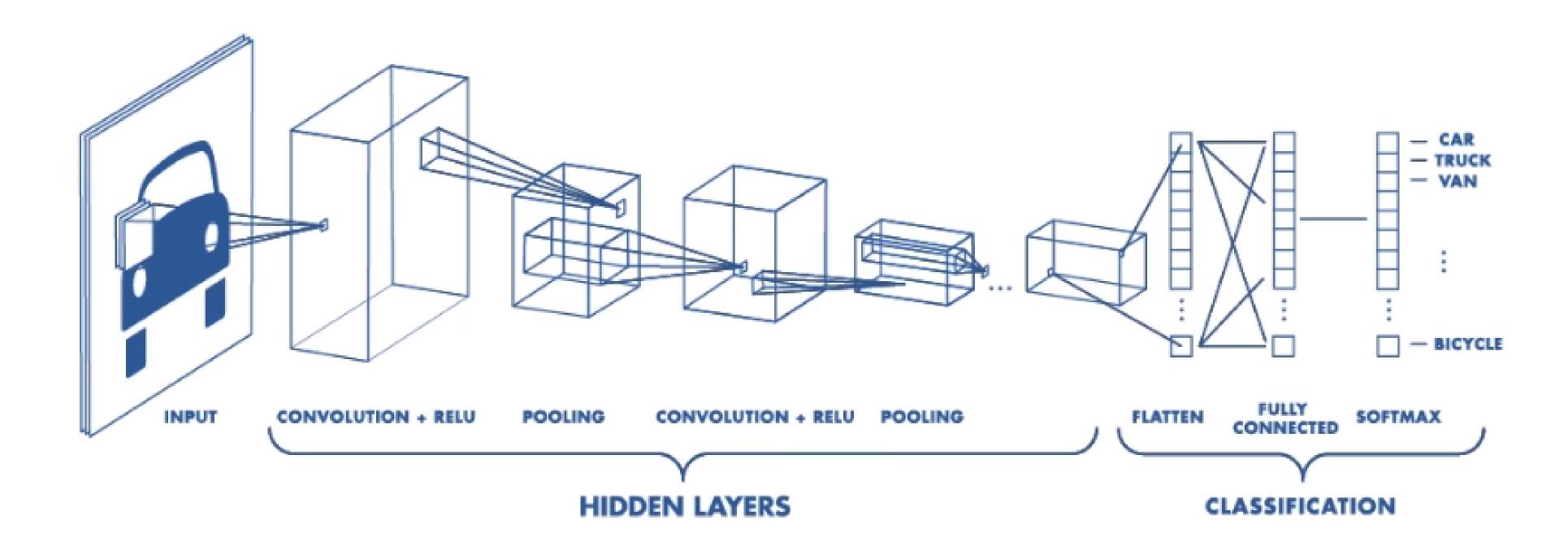
wandb.save("model.onnx")

```
# import the library
import wandb
                                                               # set up model and data
# start a new experiment
wandb.init(project="new-sota-model")
                                                               model, dataloader = get_model(), get_data()
# capture a dictionary of hyperparameters with config
wandb.config = {"learning_rate": 0.001, "epochs": 100, "batch_size": 120;
# set up model and data
model, dataloader = get_model(), get_data()
# optional: track gradients
wandb.watch(model)
for batch in dataloader:
 metrics = model.training_step()
 # log metrics inside your training loop to visualize model performance
 wandb.log(metrics)
# optional: save model at the end
```

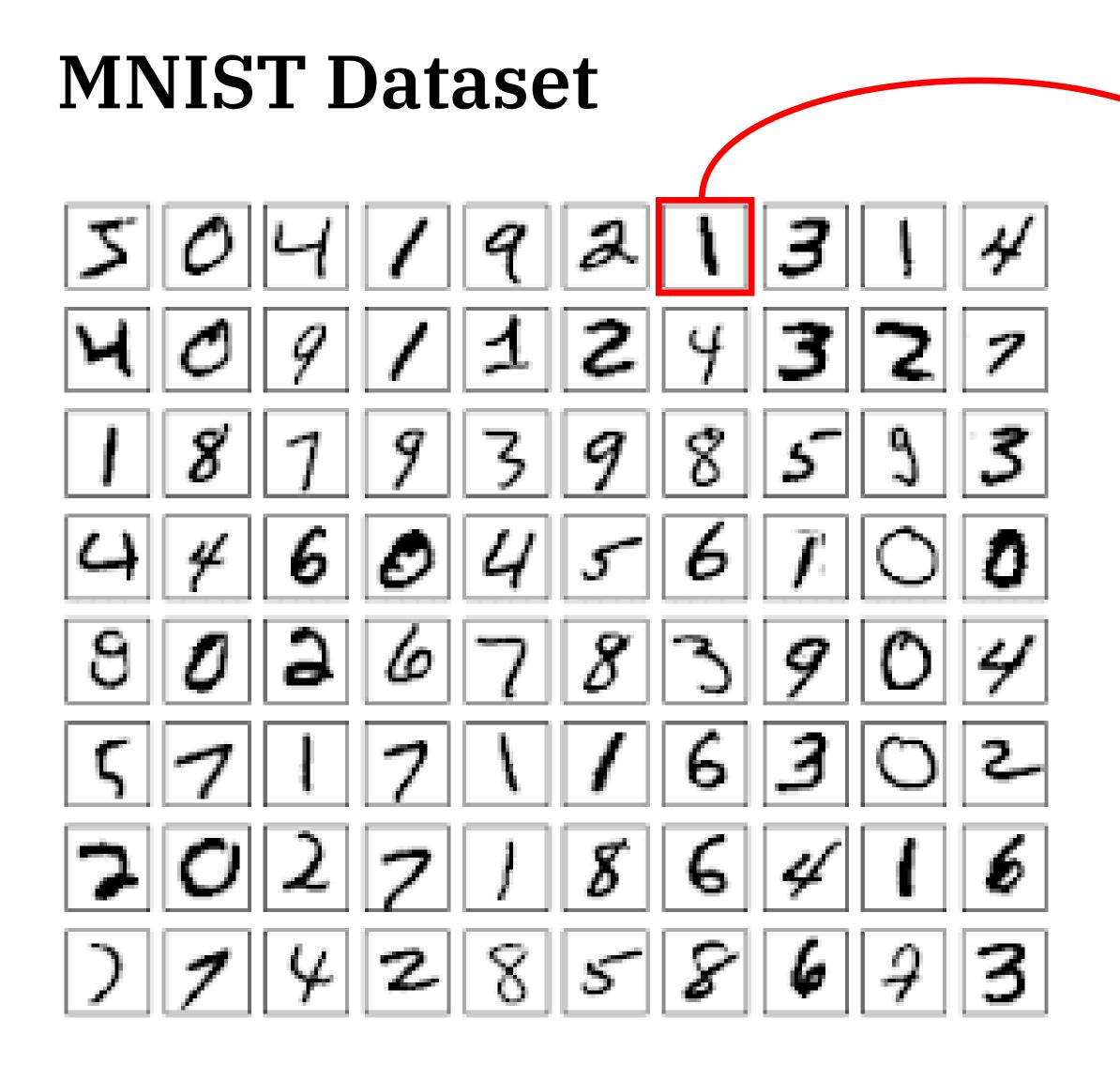
in this tutorial, we will use model: CNN

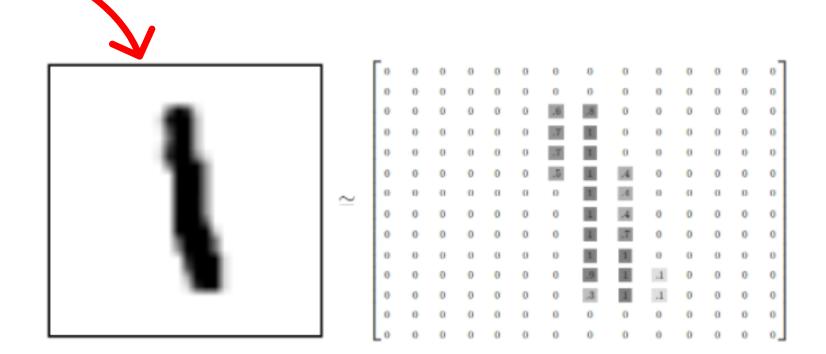
data: MNIST

CNN(Convolutional Neural Network)



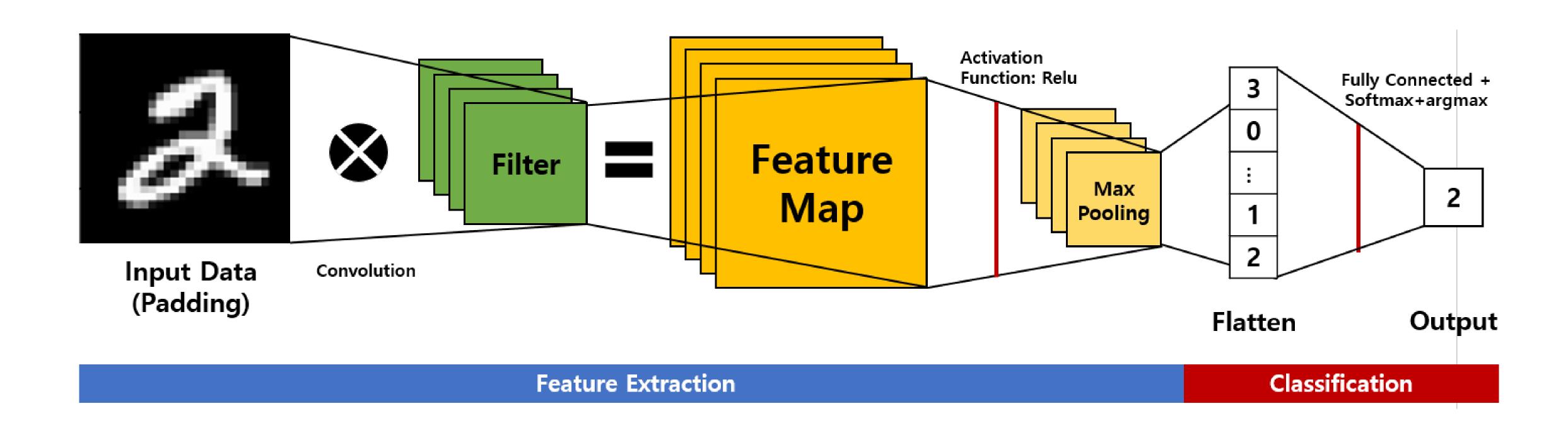
- Models that mimic human visual structure
- Useful for finding patterns to recognize images





consists of **black and white images** with values between 0 to 9, **28x28** in size, and **70,000 images** (60,000 in the training set and 10,000 in the test set)

CNN with MNIST



In pseudocode, what we'll do is:

```
# import the library
import wandb
# start a new experiment
wandb.init(project="new-sota-model")
                                                                   # optional: track gradients
# capture a dictionary of hyperparameters with config
wandb.config = {"learning_rate": 0.001, "epochs": 100, "batch size":
                                                                   wandb.watch(model)
# set up model and data
model, dataloader = get_model(), get_data()
# optional: track gradients
wandb.watch(model)
for batch in dataloader:
 metrics = model.training_step()
 # log metrics inside your training loop to visualize model performance
 wandb.log(metrics)
# optional: save model at the end
model.to_onnx()
wandb.save("model.onnx")
```

Allows wandb to track the process of training the model.

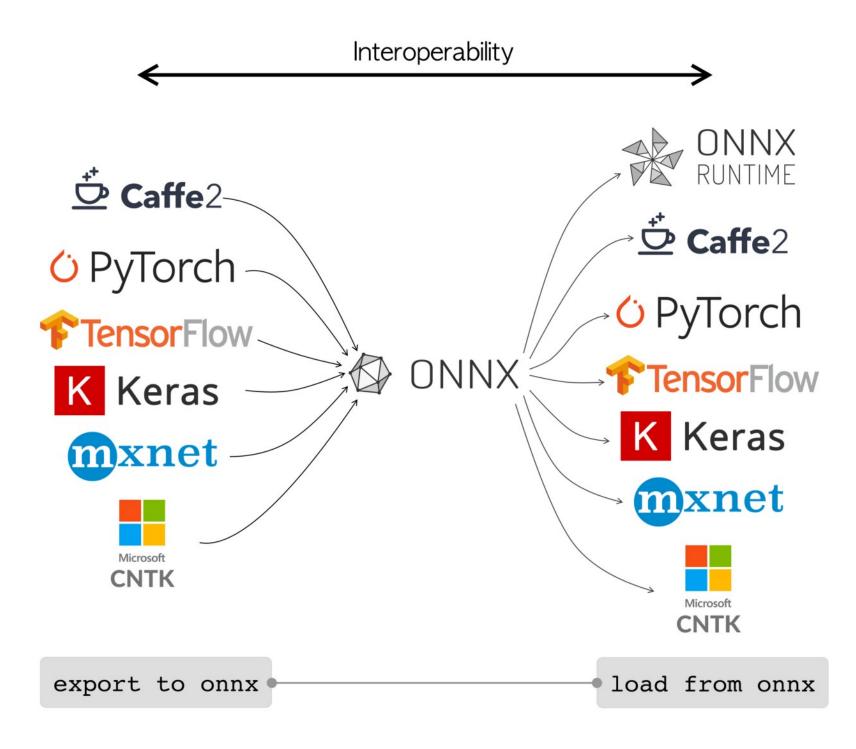
In pseudocode, what we'll do is:

wandb.save("model.onnx")

```
# import the library
import wandb
# start a new experiment
wandb.init(project="new-sota-model")
# capture a dictionary of hyperparameters with config
wandb.config = {"learning_rate": 0.001, "epochs": 100, "batch_size":
                                                     for batch in dataloader:
# set up model and data
model, dataloader = get_model(), get_data()
                                                         metrics = model.training_step()
# optional: track gradients
wandb.watch(model)
                                                         # log metrics inside your training loop to visualize model performance
for batch in dataloader:
                                                         wandb.log(metrics)
 metrics = model.training_step()
 # log metrics inside your training loop to visualize model performa
 wandb.log(metrics)
                                                                                                                            Train the model and log to wandb.
# optional: save model at the end
model.to_onnx()
```

In pseudocode, what we'll do is:

```
# import the library
import wandb
# start a new experiment
wandb.init(project="new-sota-model")
# capture a dictionary of hyperparameters with config
wandb.config = {"learning_rate": 0.001, "epochs": 100, "batch_size": 128}
# set up model and data
model, dataloader = get_model(), get_data()
# optional: track gradients
wandb.watch(model)
for batch in dataloader:
 metrics = model.training_step()
 # log metrics inside your training loop to visualize model performance
  wandb.log(metrics)
# optional: save model at the end
model.to_onnx()
wandb.save("model.onnx")
```



ONNX is short for **Open Neural Network Exchange**

 It is a sharing platform designed to make models created in different DNN framework environments
 (ex Tensorflow, PyTorch, etc.) compatible with each other.

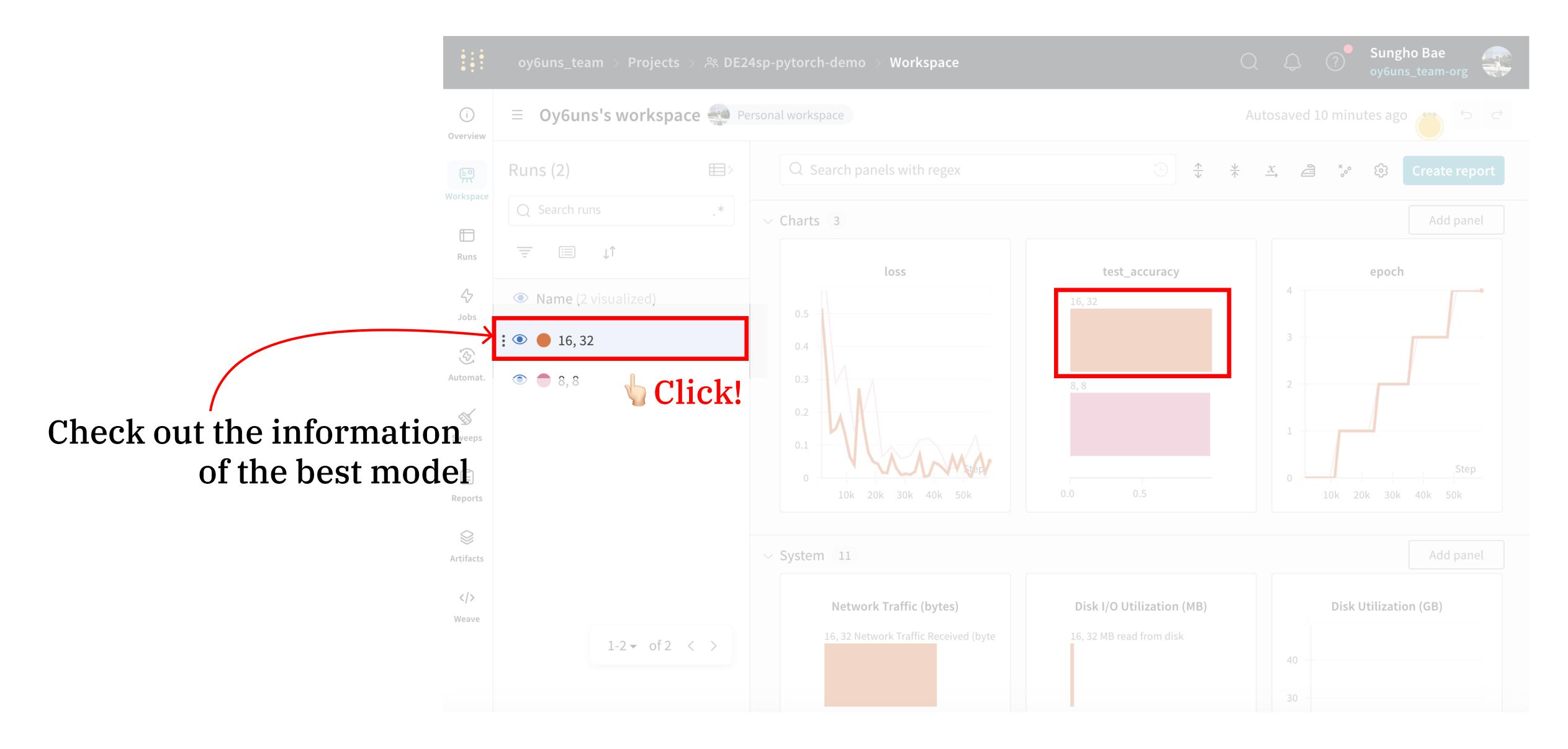
optional: save model at the end
model.to_onnx()
wandb.save("model.onnx")

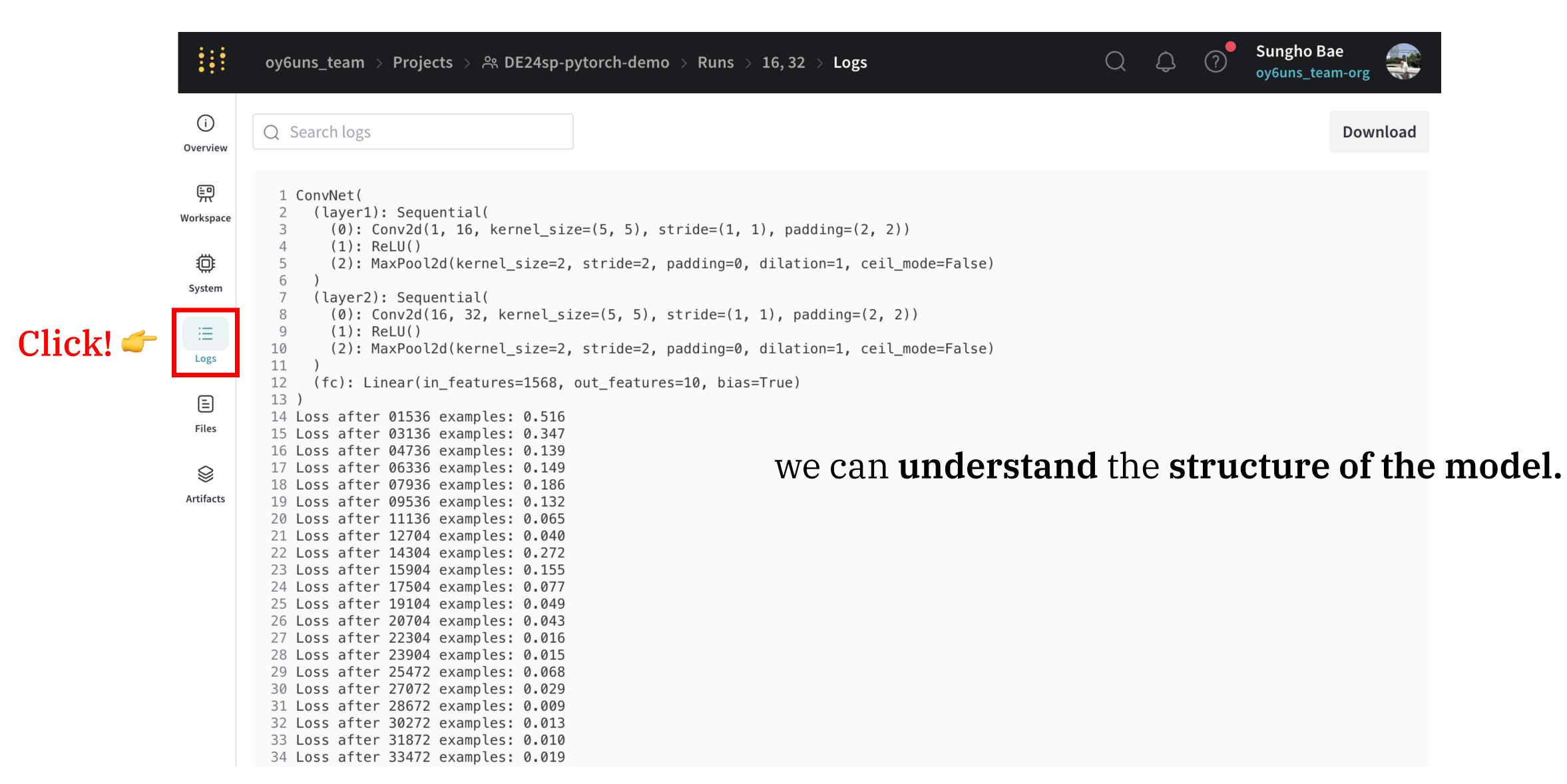
Save the model

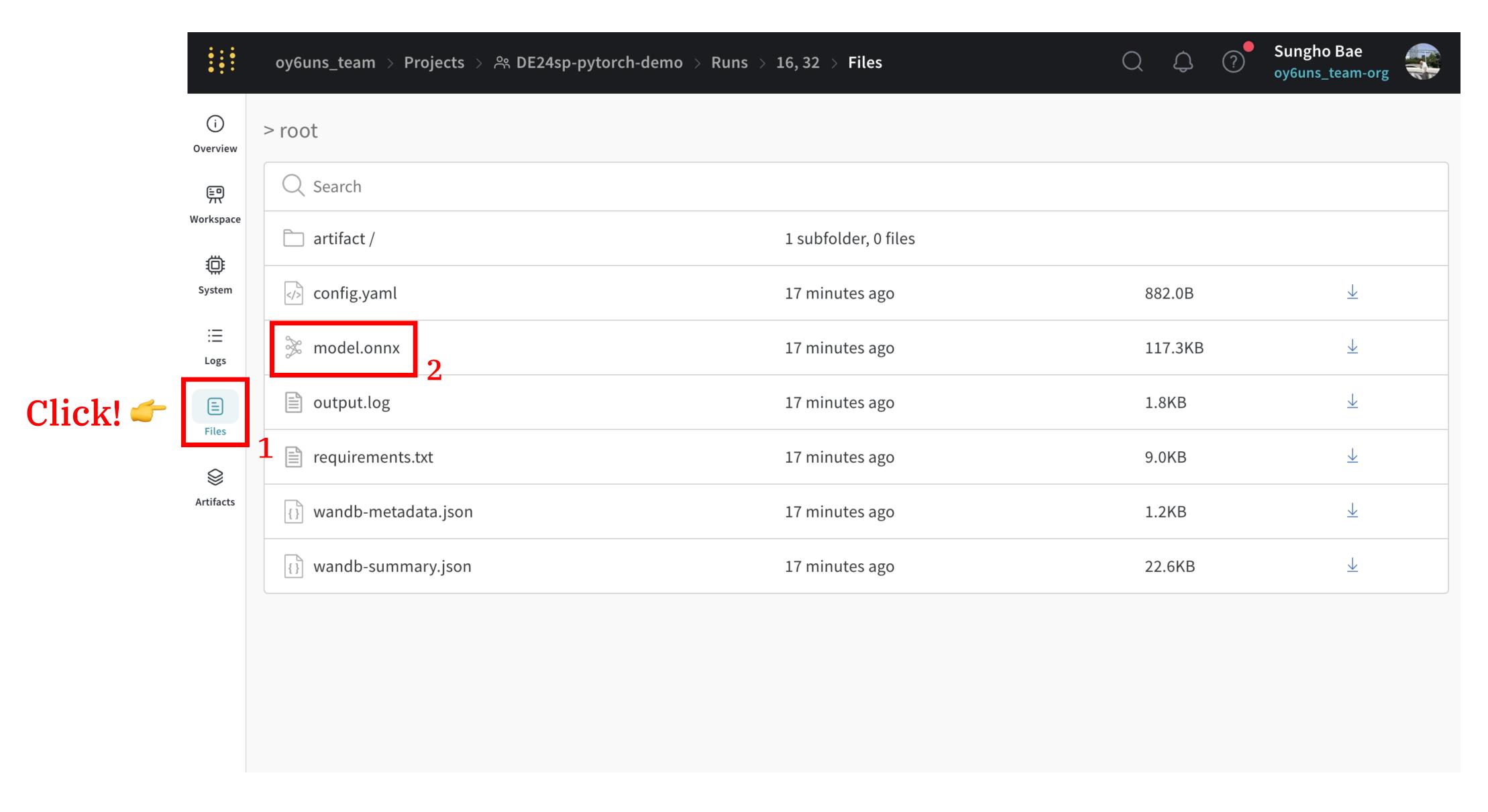
Ch3. tutorial for wandb + pytorch Colab URL: https://colab.research.google.com/ drive/1pxMw2Z6cMNSgwCCaPrRTwleiE1I6zjt7?usp=sharing model_pipeline(config) — wandb.init(config) **Click!** config = wandb.config make(config): define model, train_loader, test_loader, criterion, optimizer get_data(): make CustomDataset make_loader(): make DataLoader class ConvNet(): define CNN model structure train(): train the model wandb.watch train_batch(): calculate the loss for each epoch train_log(): log to wandb by using wandb.log test(): test model's final performance

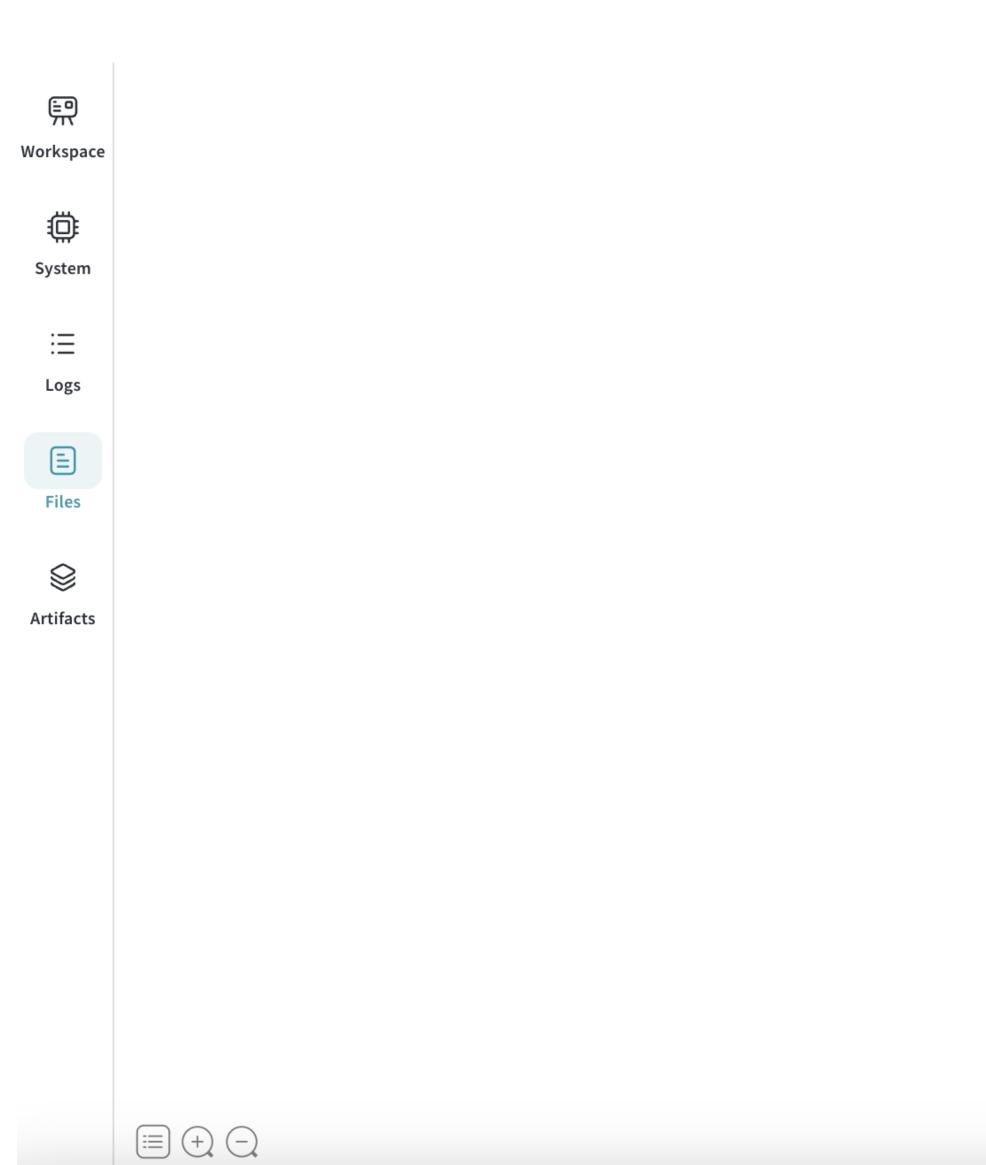
wandb.log

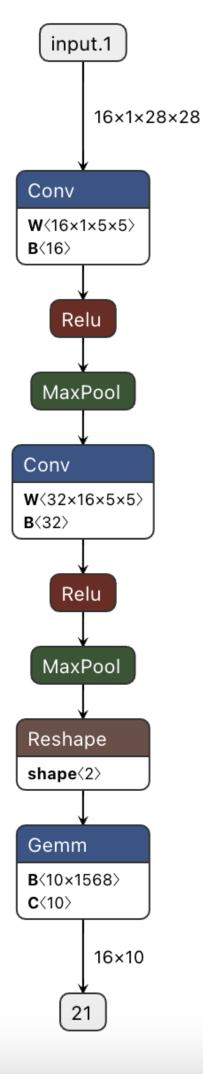
wandb.save











We can see the structure of the model as a picture.

Weights & Biases

Wandb Sweeps

way to find best parameters

```
# Import the W&B Python Library and log into W&B
import wandb
wandb.login()
# 1: Define objective/training function
def objective(config):
   score = config.x**3 + config.y
   return score
def main():
   wandb.init(project="my-first-sweep")
   score = objective(wandb.config)
   wandb.log({"score": score})
# 2: Define the search space
sweep_configuration = {
   "method": "random",
   "metric": {"goal": "minimize", "name": "score"},
   "parameters": {
       "x": {"max": 0.1, "min": 0.01},
       "y": {"values": [1, 3, 7]},
# 3: Start the sweep
sweep_id = wandb.sweep(sweep=sweep_configuration, project="my-first-sweep")
wandb.agent(sweep_id, function=main, count=10)
```

simple task: minimize the value 3x+y

```
# 1: Define objective/training function
def objective(config):
    score = config.x**3 + config.y
    return score

def main():
    wandb.init(project="my-first-sweep")
    score = objective(wandb.config)
    wandb.log({"score": score})
```

```
# Import the W&B Python Library and log into W&B
import wandb
wandb.login()
# 1: Define objective/training function
def objective(config):
   score = config.x**3 + config.y
   return score
def main():
   wandb.init(project="my-first-sweep")
   score = objective(wandb.config)
   wandb.log({"score": score})
# 2: Define the search space
sweep_configuration = {
   "method": "random",
   "metric": {"goal": "minimize", "name": "score"},
   "parameters": {
        "x": {"max": 0.1, "min": 0.01},
       "y": {"values": [1, 3, 7]},
# 3: Start the sweep
sweep_id = wandb.sweep(sweep=sweep_configuration, project="my-first-sweep")
wandb.agent(sweep_id, function=main, count=10)
```

simple task: minimize the value 3x+y

```
# 2: Define the search space
sweep_configuration = {
    "method": "random",
    "metric": {"goal": "minimize", "name": "score"},
    "parameters": {
        "x": {"max": 0.1, "min": 0.01},
        "y": {"values": [1, 3, 7]},
    },
                                        randomly search
                                          x in 0.01 < x < 0.1
                                          y in {1, 3, 7}
                                           ex) x = 0.312, y = 3
```

sweep_id = wandb.sweep(sweep=sweep_configuration, project="my-first-sweep"

wandb.agent(sweep_id, function=main, count=10)

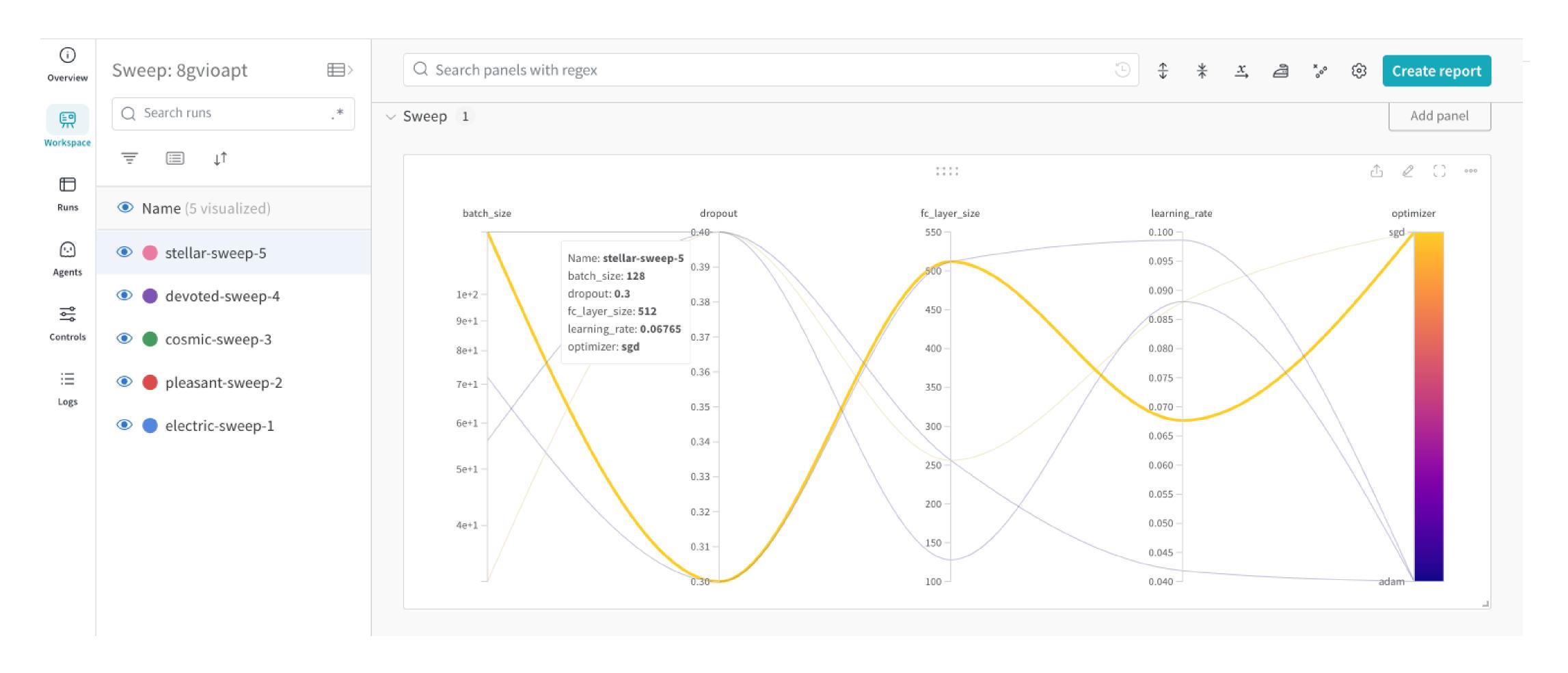
3: Start the sweep

```
# Import the W&B Python Library and log into W&B
import wandb
wandb.login()
# 1: Define objective/training function
def objective(config):
   score = config.x**3 + config.y
   return score
def main():
   wandb.init(project="my-first-sweep")
                                             # 3: Start the sweep
   score = objective(wandb.config)
   wandb.log({"score": score})
                                              sweep_id = wandb.sweep(sweep=sweep_configuration, project="my-first-sweep")
# 2: Define the search space
sweep_configuration = {
   "method": "random",
   "metric": {"goal": "minimize", "name": "score"},
                                             wandb.agent(sweep_id, function=main, count=10)
   "parameters": {
     "x": {"max": 0.1, "min": 0.01},
     "y": {"values": [1, 3, 7]},
```

Randomize the parameters and search 10 times

Colab URL:

https://colab.research.google.com/ drive/1BaG2rD_0tAWm7hSzKgqhfH3tz9BvIDKr?usp=sharing



Weights & Biases

Thank you