
Feature Store
Implementation for Real
Time Recommender
Systems

Geonwoo Cho

Hyperconnect

1. Recommender Systems of Hyperconnect

2. Preliminaries

3. Why was the Feature Store Introduced?

4. Feature Store of Hyperconnect

5. Case Studies & Adoption Impacts

Contents

1. Recommender Systems
of Hyperconnect

1.1 Recommender Systems of Hyperconnect

A social service
connecting people
worldwide with
just one swipe.

An interactive social live
streaming platform

where anyone can freely
participate in
broadcasting

B2B solutions
leveraging

HyperConnect's
accumulated video
technology."

Azar Hakuna Hyperconnect
Enterprise

1.1 Recommender Systems of Hyperconnect

Azar Hakuna Hyperconnect
Enterprise

- 1:1 matching
- Lounge Card
recommendation

- Live broadcast
recommendation

- Live broadcast
recommendation

- popular streamers
recommendation

- Live broadcast
recommendation
(B2B solution)

“We are operating a recommendation system across various features to
provide users with a better experience while connecting people.”

1.2 Differences Compared to Other
Recommender Systems

Item = User
A specialized domain that recommends users, as opposed to typical
recommendation systems that recommend static items like products or content

Real Time Recommender Systems
- Hyperconnect's recommendation system is primarily constrained to recommending
online users.

- "In user-to-user recommendation systems, if both users are new (cold), the system
may show very low recommendation performance unless real-time data (such as
real-time action logs, context, etc.) is used.”

- Hence, a recommendation system that considers real-time aspects is essential.

2. Preliminaries

2.1 Recommender Systems and features

Dataset

Unknown Input (Online Environment)

ML/AI
model

Training to predict
the target (chat
duration)

Predicting how long the
conversation will last when
user 1001 meets user 2003
(inference).

2.1 Recommender Systems and features

Dataset

Unknown Input (Online Environment)

ML/AI
model

Training to predict
the target (chat
duration)

Predicting how long the
conversation will last when
user 1001 meets user 2003
(inference).

For online model inference, it's necessary to load
features corresponding to users/items online.

2.1 Recommender Systems and features

- For online recommendations, a data storage system capable of loading
feature data is required in the online environment.

- Challenge: The same features must be stored in both offline (BigQuery)
and online (RDBMS, NoSQL) storage systems.

Product (Azar,
Hakuna) Backend

Server

Recommendation
Server

ML/AI model

user_id (long),
peer_user_id (long)

"Tell me the estimated
conversation time
between them."

Estimated chat
sec

Online Data Store
(ex. RDBMS, NOSQL)

<Feature List>

user_id
user_gender
user_country
user_avg_chat_sec
…
peer_id
peer_gender
peer_country
peer_avg_chat_sec
…

- In recommendation systems, online data needs to be loaded for model inference in
serving logic
Ex) gender, country code, birthday, registration date, average purchase amount, etc

- Implementing a storage solution that satisfies the characteristics of both training
data and serving data can be challenging.

Training data Serving data

Read pattern Accessing multiple
records based on

timestamps

Accessing specific data
based on key.

Query Frequency Occasional, Periodic Frequently

Latency - Fast

Throughput High -

2.2 Data Storage Technologies for Machine
Learning Applications

2.2 Data Storage Technologies for Machine
Learning Applications

Training data query

- Accessing single/few columns.

- Accessing multiple records where
latency is not crucial, hence the
importance of caching is low.

SELECT gender, count(*)
FROM user_profile
GROUP BY gender

Serving data query

- Accessing multiple columns.

- Utilizing cache to reduce latency
since records are divided into
frequently accessed (hot) and
infrequently accessed. (cold)

SELECT *
FROM user_profile
WHERE user_id=1234

2.3 Database for Training data: Bigquery

• Column-oriented database

• Advantages in data access
patterns at the column level, but
inefficient for searches on
individual records.

• Column data often has higher
data redundancy than row data,
leading to better compression
efficiency.

2.4 Database for Serving Data: Transactional
Database

- MySQL: RDBMS

- MongoDB: NoSQL, CP, B-tree based, Persistent

- ScyllaDB: NoSQL, AP, LSM-tree based, Persistent

- Redis: NoSQL, In-memory

RDBMS NOSQL

Schema
Primarily strict and predefined.

Flexible

Implementation Implementation in the form of
normalized tables, using table joins.

Document-based, graph
databases, key-value pairs,
wide-column stores

ACID Guarantees Not typically guaranteed

Examples MySQL, MariaDB, Oracle,
PostgreSQL

MongoDB, Cassandra,
DynamoDB, (Redis)

2.4 Database for Serving Data: Transactional
Database

- Consistency: All nodes can see the same
data at the same time (returning the most
recent data).

- Availability: All requests can be successful
or failed (reading/writing is always possible
without errors).

- Partition-tolerance: The system can
continue to operate even if message
delivery fails or part of the system (network)
breaks down.

2.4 Database for Serving Data: Transactional
Database

2.4 Database for Serving Data: Transactional
Database

B-tree

- Page-oriented: Optimizing node
size to match the operating
system's page size of 4KB for
loading data from disk to
memory efficiently.

- WAL (Write-ahead log):
Recording logs before insertion
operations to enable recovery in
case the tree becomes
corrupted.

- Fast read, slow write

2.4 Database for Serving Data: Transactional
Database

LSM-tree

- SSTable (Sorted String Table):
insertion commands are initially
stored in a memory cache. Once
the cache reaches a certain
threshold, the data is batched,
sorted, and stored as block-level
logs (flush).

- Compaction: Scanning all records
is required during searches. To
address this issue, LSM-Tree
periodically merges SSTables.

- Fast Write, Slow Read

In-memory store

- All data is loaded into memory without using disk.

- Fast write / fast read.

- High cost due to RAM usage and low durability.

2.4 Database for Serving Data: Transactional
Database

3. Why was the Feature
Store Introduced?

3.1 Hyperconnect Recommender Systems
Before the Feature Store

Training Layer Serving Layer

Offline Data Store
(ex. Bigquery)

Online Data Store
(ex. ScyllaDB, Redis)

User features Item features target

User features Item features target

… … …

Model Training

D
at

as
et

ML Model

User features Item features target

user_id
, ite

m_id

ML Model

Deploy, Serving

Backend Server

Model Inference

3.1 Hyperconnect Recommender Systems
Before the Feature Store

Training Layer Serving Layer

Offline Data Store
(ex. Bigquery)

Online Data Store
(ex. ScyllaDB, Redis)

User features Item features target

User features Item features target

… … …

Model Training

D
at

as
et

ML Model

User features Item features target

user_id
, ite

m_id

ML Model

Deploy, Serving

Backend Server

Model Inference

Developed a data synchronization pipeline
between two different data storage systems to

temporarily resolve the issue

The actual system architecture had the following structure

3.1 Hyperconnect Recommender Systems
Before the Feature Store

3.2 Challenges

- When operating a single recommendation system, the absence of a Feature
Store didn't pose significant issues.

- However, as we applied recommendation systems in various places, more
problems arose

01 Mismatch between training and serving data

02 High engineering costs when adding features

03 Duplication of components when operating multiple recommendation systems

04 Difficulty in sharing features among multiple recommendation systems

3.2.1 - Mismatch Between Training and Serving
Data

Ideal:

When querying features with the same
User ID, the same data is returned in both
the training and serving layers

Reality:

- The feature calculation logic is divided
into three different places, with
different engineers for each pipeline.

- This results in data inconsistency
between the training and serving layers.
(ex) the average chat duration or time spent for the same
user may differ between BigQuery and the Online DB.)

3.2.2 – High Engineering Costs When Adding
Features

The software engineering tasks for adding new features
to the model:
1) Modify the schema of the online data storage.

2) Develop data synchronization pipelines for the new features.

3) Backfill the new features into the online storage.

4) Add/modify logic in the backend servers to use the new features.

Problems

Frequent occurrence of slowed iteration speeds in model online experimentation
due to bottlenecks caused by software development tasks

3.2.3 – Duplication of Components When
Operating Multiple Recommender Systems

Recommender Systems 1 (ex. Arar 1:1 Matching)

- The model training pipelines varied
slightly between recommendation
systems, with minimal duplication.

- However, there was significant
duplication of logic in the data
synchronization pipelines.

Ex), offline DB connectors, online DB connectors,
data validation logic, parallel execution, incremental
update logic, throughput limiter, etc.

- This acted as technical debt whenever a
new recommendation system was added.

Recommender Systems 2 (ex.Hakuna
Live-room)

Recommender Systems N

3.2.4 – Difficulty in Sharing Features Among
Multiple Recommendation Systems
- In a single service (e.g., Azar), there can be multiple types of recommendation systems (e.g.,
1:1 Matching, Live, Lounge).

- Even if they share the same user base, the data schema and type of online storage may
differ between recommendation systems, making feature sharing difficult.
- For example, one recommendation system may use MongoDB as the online storage, using a
flatten key-value data structure and JSON for serialization.

- Another recommendation system may use Redis as the online storage, using nested data
structures and protobuf for serialization.

- Yet another recommendation system may use ScyllaDB as the online storage, directly adding
columns to the database for serialization.

- This complexity makes it challenging to share features among multiple recommendation
systems.

3.3 Reasons for Adopting a Feature Store & Role

Role
- Solving the issue of data inconsistency between training and serving data,
and acting as a platform to centralize various components needed for
operating multiple recommendation systems.

Reasons
- Centralizing various components that emerged from operating multiple
recommendation systems and leveraging technology

4. Feature Store of
Hyperconnect

Requirements for the Hyperconnect recommender system

01 Real-time calculation and usage of features
- Features should be calculated and used in near real-time.

- Real-time features have a significant impact on performance, especially when recommending users rather than
static items.

- Side-information features should be updated within seconds after user feedback occurs.

02 Support for historical features
- The system serves session-based recommendation models, requiring support for historical features.

03 Support for BigQuery as the offline storage and ScyllaDB (Cassandra compatible) as the online
storage
- BigQuery and ScyllaDB are already major technologies used within the company.

- Maintaining the existing stack is efficient for overall infrastructure management.

4.1 Open-source? In-house development?

Decision to develop in-house:

- No open-source solution that fully met our requirements

- comparing the features of the most active open-source project, Feast, with our in-house requirements

Feast In-house Feature
Store

Historical feature support X O

Offline -> Online data
synchronization

O O

Online -> Offline data
synchronization

X O

Support for real-time
updates in online storage

△ O

Support ScyllaDB as an
online storage

X O

Point-in-time Join Support O X

4.1 Open-source? In-house development?

4.1 Open-source? In-house development?

Scope of the In-house Feature Store:

- Focus only on solving the most essential problems, since in-house development can
require significant resource

- Address the challenge of creating a unified data storage for training/serving
recommendation systems!

- Avoid providing additional functionalities like feature discovery or point-in-time join.
- Feature discovery will continue to be performed using BigQuery as before

- Point-in-time Join can be implemented either using SQL as previously done or
within streaming applications

4.2 After the Feature Store: HyperConnect's
recommendation system

<Serving Layer>
By ML Engineers

<Training Layer>
By ML Engineers <Platform Layer>

4.3 Features of the Hyperconnect Feature Store

01 GitOps-based feature definition system

02 Offline to online storage synchronization pipeline (Upsync)

03 Online to offline storage synchronization pipeline (Downsync)

04 Online feature Read API

05 Access control and Data Governance support

4.3.1 GitOps-based feature definition system

Managing specifications for all features using Git and automating
various tasks using GitOps

4.3.2 – Upsync pipeline (Offline -> Online Store)

- The feature of synchronizing data from the offline storage (BigQuery) to the
online storage

- Just write SQL queries and register the pipeline in Airflow, and you can
immediately create features that are usable in both offline and online
storage.

- It's very convenient to use since only SQL needs to be written, saving
software engineering resources. However, there is a limitation that real-
time features cannot be used

Just register the GitOps YAML and write the Airflow DAG, and the
configuration is complete!

Incremental Update: An option that
updates only the data that has been
updated since the last
synchronization point, instead of
synchronizing all data every time.

4.3.2 – Upsync pipeline (Offline -> Online Store)

4.3.3 – Downsync pipeline (Online -> Offline Store)

- The feature of calculating features in real-time on the online backend servers and
registering them in the Feature Store, then synchronizing them to the offline storage
(BigQuery), similar to Change Data Capture (CDC)

- This functionality requires more software engineering resources compared to Upsync,
but it is useful for models where real-time performance is crucial

- For example, in live streaming recommendations, features like real-time viewership,
vision features, and click rate features for new sign-ups

Mainly using event streaming applications like Apache Flink for real-time feature calculation.
Feature updates are performed by sending commands to Kafka.

*Min Interval By Key 및 Random Sampling Ratio Update:
Options for which sampling policy to use when synchronizing feature updates to the offline
storage

4.3.3 – Downsync pipeline (Online -> Offline Store)

4.3.4 – Online Feature Read API

- The recommendation servers access features through the Read API instead of directly
accessing the online data storage

- API server supports access control, deserialization (Avro), and caching options (Redis).

- Initially developed and operated with FastAPI, but migrated to Spring due to performance
issues

- TPS: Several thousand or more / p99 latency: 25ms

4.3.5 – Access Control & Data Governance Support

Access Control
- Online Read API: it's possible to set accessible tables for each microservice/developer.

- Offline Storage: Use Bigquery’s access control.

Data Governance
- Data governance is being managed through data retention in both offline and online
storage.

- Since the retention period varies for each business, we provide the ability to set
retention periods for each feature.

4.4 Hyperconnect Feature Store Internal
Architecture

4.5 Summary of Usage of the Hyperconnect Feature
Store

Feature
Definition

Write Feature

Sychronization
between
storages

Read Feature

Register with GitOps

Training layer: write SQL and use Airflow
Serving layer: use Kafka

Offline -> Online: Activate Upsync pipeline
Online -> Offline: Activate Downsync pipeline
Activation method: Just add a flag in GitOps and you're done!"

Training layer: use Bigquery
Serving Layer: through Read API server

5. Case Studies &
Adoption Impacts

5.1 Use Cases

Services where the Feature Store is applied

- he majority of existing recommendation systems, including those within the Azar and
Hakuna services, with over 5 recommendation systems integrated.

- All newly started recommendation systems also adopt the Feature Store.

- The Feature Store is also utilized in anomaly user detection systems, in addition to
recommendation systems.

5.1 Use Cases

Types of recommendation systems where the Feature Store is
applied

- Boosting-based CTR (Click Through Rate) prediction models.

- Deep learning-based time spent prediction models.

- Session-based recommendation systems that utilize real-time history information.

- Recommendation systems that extract vision information from real-time videos and use
it as input for the model (limited to live streaming).

5.2 Resolution of data consistency issues

Before
Adoption

After
Adoption

- Data inconsistency issues discovered approximately
once a month.

- Significant discrepancies found between feature
statistics analyzed in BigQuery and the actual feature
statistics being used as inputs for the models.

- No data inconsistency issues discovered after the
introduction of the Feature Store.

5.3 Development productivity

The time taken to use new features in the serving layer
(after feature engineering and modeling work is completed, until new model experiments)

Before

After

1~2 Weeks

1~2 Days

Before

After

1~2 Months

2~3 Weeks

Using only batch features Using real-time features too

The benefits from the perspective of ML engineers

1. Reduced communication costs with software engineers.

2. Ability to reuse features created once in multiple recommendation models.

3. Ability to reuse features created by other ML engineers in the recommendation models I
create.

5.3 Development productivity

The benefits from the perspective of software engineers

1. Time saved on developing feature synchronization pipelines and logic, enabling focus on
core logic development

2. No need to worry about the issue of training/serving data inconsistency

5.3 Development productivity

5.4 The effects of platformization

Most recommendation systems utilize the Online Feature Read API structure.
-> With just one feature addition, numerous recommendation systems can benefit
simultaneously.

1. By integrating Redis Cache, we observed a simultaneous reduction in latency across
recommendation servers.

2. Additionally, with the adoption of binary serialization (Avro), we were able to save on data
storage costs and achieve a reduction in network latency, with some features
compressed by over 80%.

3. Upon the introduction of anomaly detection systems, we anticipate widespread benefits
across numerous recommendation systems.

5.5 Challenges In The Adoption Process

- To apply the Feature Store effectively, I directly integrated it with multiple
recommendation systems.

- There were numerous internal Feature Store presentations, conducted separately for ML
engineers and software engineers.

- The online Read API server was initially developed using Python + FastAPI, but due to
unsatisfactory performance (latency + throughput), it was rewritten in Kotlin + Spring.

- Additionally, as one of the largest clients for the internal shared distributed database
(Scylla), I frequently consulted with the DevOps team

Reference

1. 실시간 추천 시스템을 위한 Feature Store 구현기
https://deview.kr/2023/sessions/536

2. 머신러닝 어플리케이션을 위한 데이터 저장소 기술
https://hyperconnect.github.io/2022/07/11/data-stores-for-ml-apps.html

https://deview.kr/2023/sessions/536

Q&A

Thank you!

