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1. Recommender Systems 
of Hyperconnect



1.1 Recommender Systems of Hyperconnect

A social service 
connecting people 
worldwide with 
just one swipe.

An interactive social live 
streaming platform 

where anyone can freely 
participate in 
broadcasting

B2B solutions 
leveraging 

HyperConnect's 
accumulated video 
technology."

Azar Hakuna Hyperconnect 
Enterprise



1.1 Recommender Systems of Hyperconnect

Azar Hakuna Hyperconnect 
Enterprise

- 1:1 matching
- Lounge Card
recommendation

- Live broadcast 
recommendation

- Live broadcast 
recommendation

- popular streamers
recommendation

- Live broadcast 
recommendation
(B2B solution)

“We are operating a recommendation system across various features to 
provide users with a better experience while connecting people.”



1.2 Differences Compared to Other 
Recommender Systems

Item = User
A specialized domain that recommends users, as opposed to typical 
recommendation systems that recommend static items like products or content

Real Time Recommender Systems
- Hyperconnect's recommendation system is primarily constrained to recommending 
online users. 

- "In user-to-user recommendation systems, if both users are new (cold), the system 
may show very low recommendation performance unless real-time data (such as 
real-time action logs, context, etc.) is used.”

- Hence, a recommendation system that considers real-time aspects is essential.



2. Preliminaries



2.1 Recommender Systems and features

Dataset

Unknown Input (Online Environment)

ML/AI
model

Training to predict 
the target (chat 
duration)

Predicting how long the 
conversation will last when 
user 1001 meets user 2003 
(inference).



2.1 Recommender Systems and features

Dataset

Unknown Input (Online Environment)

ML/AI
model

Training to predict 
the target (chat 
duration)

Predicting how long the 
conversation will last when 
user 1001 meets user 2003 
(inference).

For online model inference, it's necessary to load 
features corresponding to users/items online.



2.1 Recommender Systems and features

- For online recommendations, a data storage system capable of loading 
feature data is required in the online environment.

- Challenge: The same features must be stored in both offline (BigQuery) 
and online (RDBMS, NoSQL) storage systems.

Product (Azar,
Hakuna) Backend

Server

Recommendation 
Server

ML/AI model

user_id (long), 
peer_user_id (long)

"Tell me the estimated 
conversation time 
between them."

Estimated chat 
sec

Online Data Store
(ex. RDBMS, NOSQL)

<Feature List>

user_id
user_gender
user_country
user_avg_chat_sec
…
peer_id
peer_gender
peer_country
peer_avg_chat_sec
…



- In recommendation systems, online data needs to be loaded for model inference in 
serving logic
Ex) gender, country code, birthday, registration date, average purchase amount, etc

- Implementing a storage solution that satisfies the characteristics of both training 
data and serving data can be challenging.

Training data Serving data

Read pattern Accessing multiple 
records based on 

timestamps

Accessing specific data 
based on key.

Query Frequency Occasional, Periodic Frequently

Latency - Fast

Throughput High - 

2.2 Data Storage Technologies for Machine 
Learning Applications



2.2 Data Storage Technologies for Machine 
Learning Applications

Training data query

- Accessing single/few columns.

- Accessing multiple records where 
latency is not crucial, hence the 
importance of caching is low.

SELECT gender, count(*) 
FROM user_profile 
GROUP BY gender

Serving data query

- Accessing multiple columns. 

- Utilizing cache to reduce latency 
since records are divided into 
frequently accessed (hot) and 
infrequently accessed. (cold)

SELECT * 
FROM user_profile 
WHERE user_id=1234



2.3 Database for Training data: Bigquery

• Column-oriented database

• Advantages in data access 
patterns at the column level, but 
inefficient for searches on 
individual records.

• Column data often has higher 
data redundancy than row data, 
leading to better compression 
efficiency.



2.4 Database for Serving Data: Transactional 
Database

- MySQL: RDBMS

- MongoDB: NoSQL, CP, B-tree based, Persistent

- ScyllaDB: NoSQL, AP, LSM-tree based, Persistent

- Redis: NoSQL, In-memory



RDBMS NOSQL

Schema
Primarily strict and predefined.

Flexible

Implementation Implementation in the form of 
normalized tables, using table joins.

Document-based, graph 
databases, key-value pairs,
wide-column stores

ACID Guarantees Not typically guaranteed

Examples MySQL, MariaDB, Oracle, 
PostgreSQL

MongoDB, Cassandra, 
DynamoDB, (Redis)

2.4 Database for Serving Data: Transactional 
Database



- Consistency: All nodes can see the same 
data at the same time (returning the most 
recent data). 

- Availability: All requests can be successful 
or failed (reading/writing is always possible 
without errors). 

- Partition-tolerance: The system can 
continue to operate even if message 
delivery fails or part of the system (network) 
breaks down.

2.4 Database for Serving Data: Transactional 
Database



2.4 Database for Serving Data: Transactional 
Database

B-tree

- Page-oriented: Optimizing node 
size to match the operating 
system's page size of 4KB for 
loading data from disk to 
memory efficiently.

- WAL (Write-ahead log): 
Recording logs before insertion 
operations to enable recovery in 
case the tree becomes 
corrupted.

- Fast read, slow write



2.4 Database for Serving Data: Transactional 
Database

LSM-tree

- SSTable (Sorted String Table): 
insertion commands are initially 
stored in a memory cache. Once 
the cache reaches a certain 
threshold, the data is batched, 
sorted, and stored as block-level 
logs (flush).

- Compaction: Scanning all records 
is required during searches. To 
address this issue, LSM-Tree 
periodically merges SSTables.

- Fast Write, Slow Read



In-memory store

- All data is loaded into memory without using disk.

- Fast write / fast read.

- High cost due to RAM usage and low durability.

2.4 Database for Serving Data: Transactional 
Database



3. Why was the Feature 
Store Introduced?



3.1 Hyperconnect Recommender Systems 
Before the Feature Store

Training Layer Serving Layer

Offline Data Store
(ex. Bigquery)

Online Data Store
(ex. ScyllaDB, Redis)

User features Item features target

User features Item features target

… … …

Model Training

D
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User features Item features target
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m_id

ML Model

Deploy, Serving

Backend Server

Model Inference



3.1 Hyperconnect Recommender Systems 
Before the Feature Store

Training Layer Serving Layer

Offline Data Store
(ex. Bigquery)

Online Data Store
(ex. ScyllaDB, Redis)

User features Item features target

User features Item features target

… … …

Model Training

D
at

as
et

ML Model

User features Item features target

user_id
, ite

m_id

ML Model

Deploy, Serving

Backend Server

Model Inference

Developed a data synchronization pipeline 
between two different data storage systems to 

temporarily resolve the issue



The actual system architecture had the following structure

3.1 Hyperconnect Recommender Systems 
Before the Feature Store



3.2 Challenges

- When operating a single recommendation system, the absence of a Feature 
Store didn't pose significant issues. 

- However, as we applied recommendation systems in various places, more 
problems arose

01 Mismatch between training and serving data

02 High engineering costs when adding features

03 Duplication of components when operating multiple recommendation systems

04 Difficulty in sharing features among multiple recommendation systems



3.2.1 - Mismatch Between Training and Serving 
Data

Ideal:

When querying features with the same 
User ID, the same data is returned in both 
the training and serving layers

Reality:

- The feature calculation logic is divided 
into three different places, with 
different engineers for each pipeline. 

- This results in data inconsistency 
between the training and serving layers. 
(ex) the average chat duration or time spent for the same 
user may differ between BigQuery and the Online DB.)



3.2.2 – High Engineering Costs When Adding 
Features

The software engineering tasks for adding new features 
to the model:
1) Modify the schema of the online data storage.

2) Develop data synchronization pipelines for the new features.

3) Backfill the new features into the online storage.

4) Add/modify logic in the backend servers to use the new features.

Problems

Frequent occurrence of slowed iteration speeds in model online experimentation 
due to bottlenecks caused by software development tasks



3.2.3 – Duplication of Components When 
Operating Multiple Recommender Systems

Recommender Systems 1 (ex. Arar 1:1 Matching)

- The model training pipelines varied 
slightly between recommendation 
systems, with minimal duplication.

-  However, there was significant 
duplication of logic in the data 
synchronization pipelines. 

Ex), offline DB connectors, online DB connectors, 
data validation logic, parallel execution, incremental 
update logic, throughput limiter, etc. 

- This acted as technical debt whenever a 
new recommendation system was added.

Recommender Systems 2 (ex.Hakuna 
Live-room)

Recommender Systems N



3.2.4 – Difficulty in Sharing Features Among 
Multiple Recommendation Systems
- In a single service (e.g., Azar), there can be multiple types of recommendation systems (e.g., 
1:1 Matching, Live, Lounge). 

- Even if they share the same user base, the data schema and type of online storage may 
differ between recommendation systems, making feature sharing difficult.
- For example, one recommendation system may use MongoDB as the online storage, using a 
flatten key-value data structure and JSON for serialization. 

- Another recommendation system may use Redis as the online storage, using nested data 
structures and protobuf for serialization. 

- Yet another recommendation system may use ScyllaDB as the online storage, directly adding 
columns to the database for serialization.

- This complexity makes it challenging to share features among multiple recommendation 
systems.



3.3 Reasons for Adopting a Feature Store & Role

Role
- Solving the issue of data inconsistency between training and serving data, 
and acting as a platform to centralize various components needed for 
operating multiple recommendation systems.

Reasons
- Centralizing various components that emerged from operating multiple 
recommendation systems and leveraging technology



4. Feature Store of 
Hyperconnect



Requirements for the Hyperconnect recommender system

01 Real-time calculation and usage of features
- Features should be calculated and used in near real-time.

- Real-time features have a significant impact on performance, especially when recommending users rather than 
static items.

- Side-information features should be updated within seconds after user feedback occurs.

02 Support for historical features
- The system serves session-based recommendation models, requiring support for historical features.

03 Support for BigQuery as the offline storage and ScyllaDB (Cassandra compatible) as the online 
storage
- BigQuery and ScyllaDB are already major technologies used within the company.

- Maintaining the existing stack is efficient for overall infrastructure management.

4.1 Open-source? In-house development?



Decision to develop in-house:

- No open-source solution that fully met our requirements

- comparing the features of the most active open-source project, Feast, with our in-house requirements

Feast In-house Feature 
Store

Historical feature support X O

Offline -> Online data 
synchronization

O O

Online -> Offline data 
synchronization

X O

Support for real-time 
updates in online storage

△ O

Support ScyllaDB as an 
online storage

X O

Point-in-time Join Support O X

4.1 Open-source? In-house development?



4.1 Open-source? In-house development?

Scope of the In-house Feature Store:

- Focus only on solving the most essential problems, since in-house development can 
require significant resource

-  Address the challenge of creating a unified data storage for training/serving 
recommendation systems! 

- Avoid providing additional functionalities like feature discovery or point-in-time join. 
- Feature discovery will continue to be performed using BigQuery as before

- Point-in-time Join can be implemented either using SQL as previously done or 
within streaming applications



4.2 After the Feature Store: HyperConnect's 
recommendation system

<Serving Layer>
By ML Engineers

<Training Layer>
By ML Engineers <Platform Layer>



4.3 Features of the Hyperconnect Feature Store

01 GitOps-based feature definition system

02 Offline to online storage synchronization pipeline (Upsync) 

03 Online to offline storage synchronization pipeline (Downsync)

04 Online feature Read API

05 Access control and Data Governance support



4.3.1 GitOps-based feature definition system

Managing specifications for all features using Git and automating 
various tasks using GitOps



4.3.2 – Upsync pipeline (Offline -> Online Store)

- The feature of synchronizing data from the offline storage (BigQuery) to the 
online storage 

- Just write SQL queries and register the pipeline in Airflow, and you can 
immediately create features that are usable in both offline and online 
storage. 

- It's very convenient to use since only SQL needs to be written, saving 
software engineering resources. However, there is a limitation that real-
time features cannot be used



Just register the GitOps YAML and write the Airflow DAG, and the 
configuration is complete!

Incremental Update: An option that 
updates only the data that has been 
updated since the last 
synchronization point, instead of 
synchronizing all data every time.

4.3.2 – Upsync pipeline (Offline -> Online Store)



4.3.3 – Downsync pipeline (Online -> Offline Store)

- The feature of calculating features in real-time on the online backend servers and 
registering them in the Feature Store, then synchronizing them to the offline storage 
(BigQuery), similar to Change Data Capture (CDC)

- This functionality requires more software engineering resources compared to Upsync, 
but it is useful for models where real-time performance is crucial

- For example, in live streaming recommendations, features like real-time viewership, 
vision features, and click rate features for new sign-ups



Mainly using event streaming applications like Apache Flink for real-time feature calculation. 
Feature updates are performed by sending commands to Kafka.

*Min Interval By Key 및 Random Sampling Ratio Update:
Options for which sampling policy to use when synchronizing feature updates to the offline 
storage

4.3.3 – Downsync pipeline (Online -> Offline Store)



4.3.4 – Online Feature Read API

- The recommendation servers access features through the Read API instead of directly 
accessing the online data storage

- API server supports access control, deserialization (Avro), and caching options (Redis).

- Initially developed and operated with FastAPI, but migrated to Spring due to performance 
issues

- TPS: Several thousand or more / p99 latency: 25ms



4.3.5 – Access Control & Data Governance Support

Access Control
- Online Read API: it's possible to set accessible tables for each microservice/developer. 

- Offline Storage: Use Bigquery’s access control.

Data Governance
- Data governance is being managed through data retention in both offline and online 
storage. 

- Since the retention period varies for each business, we provide the ability to set 
retention periods for each feature.



4.4 Hyperconnect Feature Store Internal 
Architecture



4.5 Summary of Usage of the Hyperconnect Feature 
Store

Feature 
Definition

Write Feature

Sychronization 
between 
storages

Read Feature

Register with GitOps

Training layer: write SQL and use Airflow
Serving layer: use Kafka

Offline -> Online: Activate Upsync pipeline
Online -> Offline: Activate Downsync pipeline
Activation method: Just add a flag in GitOps and you're done!"

Training layer: use Bigquery
Serving Layer: through Read API server



5. Case Studies & 
Adoption Impacts



5.1 Use Cases

Services where the Feature Store is applied

- he majority of existing recommendation systems, including those within the Azar and 
Hakuna services, with over 5 recommendation systems integrated.

- All newly started recommendation systems also adopt the Feature Store.

- The Feature Store is also utilized in anomaly user detection systems, in addition to 
recommendation systems.



5.1 Use Cases

Types of recommendation systems where the Feature Store is 
applied

- Boosting-based CTR (Click Through Rate) prediction models.

- Deep learning-based time spent prediction models.

- Session-based recommendation systems that utilize real-time history information.

- Recommendation systems that extract vision information from real-time videos and use 
it as input for the model (limited to live streaming).



5.2 Resolution of data consistency issues

Before 
Adoption

After 
Adoption

- Data inconsistency issues discovered approximately 
once a month.

- Significant discrepancies found between feature 
statistics analyzed in BigQuery and the actual feature 
statistics being used as inputs for the models.

- No data inconsistency issues discovered after the 
introduction of the Feature Store.



5.3 Development productivity

The time taken to use new features in the serving layer 
(after feature engineering and modeling work is completed, until new model experiments)

Before

After

1~2 Weeks

1~2 Days

Before

After

1~2 Months

2~3 Weeks

Using only batch features Using real-time features too



The benefits from the perspective of ML engineers

1. Reduced communication costs with software engineers.

2. Ability to reuse features created once in multiple recommendation models.

3. Ability to reuse features created by other ML engineers in the recommendation models I 
create.

5.3 Development productivity



The benefits from the perspective of software engineers

1. Time saved on developing feature synchronization pipelines and logic, enabling focus on 
core logic development

2. No need to worry about the issue of training/serving data inconsistency

5.3 Development productivity



5.4 The effects of platformization

Most recommendation systems utilize the Online Feature Read API structure. 
-> With just one feature addition, numerous recommendation systems can benefit 
simultaneously.

1. By integrating Redis Cache, we observed a simultaneous reduction in latency across 
recommendation servers. 

2. Additionally, with the adoption of binary serialization (Avro), we were able to save on data 
storage costs and achieve a reduction in network latency, with some features 
compressed by over 80%. 

3. Upon the introduction of anomaly detection systems, we anticipate widespread benefits 
across numerous recommendation systems.



5.5 Challenges In The Adoption Process

- To apply the Feature Store effectively, I directly integrated it with multiple 
recommendation systems. 

- There were numerous internal Feature Store presentations, conducted separately for ML 
engineers and software engineers. 

- The online Read API server was initially developed using Python + FastAPI, but due to 
unsatisfactory performance (latency + throughput), it was rewritten in Kotlin + Spring. 

- Additionally, as one of the largest clients for the internal shared distributed database 
(Scylla), I frequently consulted with the DevOps team
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