
박 사 학 위 논 문
Ph.D. Dissertation

매장 내 센서 데이터를 활용한 고객 재방문 예측

Customer Revisit Prediction Using In-Store Sensor Data

2019

김 선 동 (金先東 Kim, Sundong)

한 국 과 학 기 술 원

Korea Advanced Institute of Science and Technology



박 사 학 위 논 문

매장 내 센서 데이터를 활용한 고객 재방문 예측

2019

김 선 동

한 국 과 학 기 술 원

산업 및 시스템 공학과 (지식서비스공학대학원)



매장 내 센서 데이터를 활용한 고객 재방문 예측

김 선 동

위 논문은 한국과학기술원 박사학위논문으로

학위논문 심사위원회의 심사를 통과하였음

2019년 05월 16일

심사위원장 이 재 길 (인)

심 사 위 원 이 문 용 (인)

심 사 위 원 김 경 국 (인)

심 사 위 원 장 영 재 (인)

심 사 위 원 차 미 영 (인)



Customer Revisit Prediction Using In-Store Sensor

Data

Sundong Kim

Advisor: Jae-Gil Lee

A dissertation submitted to the faculty of

Korea Advanced Institute of Science and Technology in

partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Industrial and Systems Engineering (Knowledge

Service Engineering)

Daejeon, Korea

May 16, 2019

Approved by

Jae-Gil Lee

Professor of Industrial and Systems Engineering

The study was conducted in accordance with Code of Research Ethics1.

1 Declaration of Ethical Conduct in Research: I, as a graduate student of Korea Advanced Institute of Science and

Technology, hereby declare that I have not committed any act that may damage the credibility of my research. This

includes, but is not limited to, falsification, thesis written by someone else, distortion of research findings, and plagiarism.

I confirm that my thesis contains honest conclusions based on my own careful research under the guidance of my advisor.



DKSE
20155042

김선동. 매장 내 센서 데이터를 활용한 고객 재방문 예측. 산업 및 시스템

공학과 (지식서비스공학대학원) . 2019년. 96+iv 쪽. 지도교수: 이재길.

(영문 논문)

Sundong Kim. Customer Revisit Prediction Using In-Store Sensor Data. De-

partment of Industrial and Systems Engineering (Graduate School of Knowl-

edge Service Engineering) . 2019. 96+iv pages. Advisor: Jae-Gil Lee. (Text

in English)

초 록

센서 기술의 발전으로 오프라인 환경에서 대량의 고객 데이터 수집이 이루어지고 있다. 수집된 데이터를

기반으로 다방면의 분석 결과를 제공하는 솔루션은 운영하는 매장의 지표들 모니터링을 가능케 하였고, 관

리자들은 정량적인 분석을 통해 타깃 마케팅, 매대 배치 변경 등 만족스러운 고객 경험을 위한 조치를 취할

수 있게 되었다. 이러한 노력의 궁극적인 목표는 지속적인 수익 창출인데, 이를 위해서는 고객의 잠재적

가치를 높일 수 있는 재방문을 끌어내는 것이 매우 중요하다.

본 학위 논문에서는 매장 내부에서 수집된 센서 데이터를 활용한 고객의 재방문 예측 (Revisit predic-

tion)의중요성을설명하고두가지예측모델링기법을제시한다. 재방문이란지표를잘예측하게되면상점

관리자는 고객의 방문 패턴을 파악하여 예상 수익을 간접적으로 측정할 수 있다. 또한 고객의 재방문 의도를

알면 고객군별 타깃 마케팅을 활용할 수 있다. 타깃 마케팅의 예로, 단골에게는 상위 브랜드를 추천하여

다양한 경험을 제공하는 동시에, 재방문 의지가 낮은 고객에게는 현재 방문 안에 대량 구매를 유도하거나

공격적인 할인 정책을 제공함으로써 고객의 재방문을 유도하고 객단가를 높이는 효과를 얻을 수 있다.

재방문 예측을 위해 매장 내부에서 수집된 센서 데이터 (In-store sensor data)를 활용하였는데 이는

쇼핑할 때에 발생하는 고객의 이동 경로를 활용하기 위함이다. 매장 안에서 발생하는 데이터만 수집할 수

있다는 조건하에, 매장 내부에서의 이동 경로는 와이파이 핑거프린팅 기술이 적용된 센서를 매장 곳곳에

설치하는 방법으로 비교적 쉽게 얻을 수 있기 때문이다. 마찬가지로, 재방문이라는 지표 역시 기기의 고유

ID 값을 바탕으로 확인할 수 있다. 이외에도 고객의 재방문과 관련이 있는 특성들로는 신상 정보나 주로

방문하는장소들,기방문에서얻을수있는구매정보등이있지만,복합적인고객관리시스템이존재하거나

애플리케이션 등을 통해 고객의 위치 정보를 확보한 경우만 한정적으로 입수할 수 있다.

본 논문의 첫 번째 파트에서는 센서들로부터 얻어진 데이터만으로 고객의 재방문을 결정짓는 다양한

특성을 디자인하였고 (Feature engineering), 이러한 특성들을 적용한 기계 학습 모델이 그렇지 않은 모델에

비해 재방문 예측에 4.7–24.3%만큼 효과적임을 입증하였다. 특히 방문 횟수가 적어서 예측이 힘들었던 고

객군에서 이러한 특성들이 재방문 예측에 매우 효과적임을 밝혔다. 이외에도 설계한 특성들의 설명과 함께

각 특성 그룹별 예측력을 살펴보았으며, 고객의 데이터 대부분이 누락되는 상황에서도 재방문 예측 모델의

성능이 유지됨을 실험적으로 보였다. 또한 데이터 수집 기간의 변화에 따른 모델의 성능과 센서 데이터를

활용할 때 주의해야 할 점을 고찰하였다. 이 파트에서 소개한 특성 모델링 기법부터 다양한 실험 세팅 및

결과 분석론까지의 일련의 프로세스들은 다양한 예측 문제에도 적용될 수 있다.

본 논문의 두 번째 파트에서는 딥 러닝 (Deep learning)과 생존 분석 (Survival analysis) 방법을 결합하

여 부분적으로만 관측된 고객 데이터를 놓치지 않고 활용하는 방안을 제안한다. 고객의 방문 횟수가 적은

경우, 부분 관측 데이터 (Partial observations)가 필연적으로 발생할 수밖에 없는데, 부분 관측 데이터의

경우 재방문 간격 정보가 존재하지 않아 회귀분석을 활용한 기존 기계 학습 모델에서 활용하기에 어려움이

있다. 생존 분석 기법을 활용하면 부분 관측 데이터를 활용할 수 있지만, 고객의 매장 방문 간격과 널리

알려진 분포는 확연히 다르기 때문에 생존 분석 기법을 적용하기 위한 기본적인 가정들을 무시하게 된다.

분포를 가정하지 않으면서, 고객의 방문 간격을 보다 정교하게 학습하기 위해 이산적 재방문율 (Quantized

revisit rate)을 출력하는 딥 러닝 모델을 제안하였다. 제시하는 SurvRev 프레임워크는 딥 러닝 모델과 생존

분석 모델의 조합을 통해 각 방문에 대해 고객의 방문 이후 365 일간의 재방문율을 예측할 수 있는 모델이다.



재방문 예측의 다양한 지표들을 보다 잘 반영하기 위하여 SurvRev 모델은 다양한 손실 함수를 최적화한다.

또한 실험 결과를 통해 SurvRev 모델이 기존 방법론들에 비해 우수함을 입증하였다. 이 파트에서는 데이터

마이닝 문제에서 생기는 중요한 이슈를 모델의 개선을 통해 해결하는 방법을 서술하고자 하였다.

재방문 예측 모델의 적용을 위해 우리는 서울 도심에 위치한 7개 주요 매장에서 2.5년 간 570만 건

이상의 실내 이동 패턴 데이터를 수집하였고, 일부를 정제하여 벤치마크 데이터 세트로 공개하였다. 본 연구

및 데이터가 고객의 쇼핑 패턴을 탐구하는 다양한 후속 연구들에 활용되길 바란다.

핵 심 낱 말 재방문 예측, 고객 행동 예측, 예측 분석, 소매 분석, 매장 내에서 수집된 발자취 분석, 유저

모델링, 센서 데이터, 움직임 데이터, 특성 추출, 데이터 마이닝, 기계 학습, 딥 러닝, 생존 분석, 종적 데이터

Abstract

With the advancement of sensor technology, offline data collection has become possible, and many retail

analytics companies are beginning to offer solutions that provide data collection and analysis. Thereby,

store managers can grasp the status of their stores, thus trying to satisfy the customers’ experience. Many

of these efforts are carried out in order to secure regular customers for continuous store management

and profit generation. To get closer to customers, companies strive to understand customers’ interest

and profile. Furthermore, they make an effort to predict customers’ potential lifetime values, purchasing

patterns, revisits, and stickiness. Among these objectives, customer revisit is a feasible and valuable

metric to study since it can be recognized by only using customer foot-traffic data. This is very important

to note since purchase data and user profiles are considered as proprietary information and difficult to

obtain outside the company, but customer mobility becomes relatively easy to obtain through location

monitoring technology once we get the customers’ permission through their mobile device.

By knowing customers’ visitation pattern, store managers can indirectly gauge the expected revenue.

Targeted marketing can also be available by knowing customers’ revisit intention. By offering discount

coupons, merchants can encourage customers to accidentally revisit a store nearby. Also, they can offer

a sister brand with finer products to provide new shopping experiences to loyal customers. In this way,

they can increase the revenue as well as satisfy their customers. My thesis focuses on these closely related

questions—revisit prediction—to capture the potential regular customers of the store. To achieve the

goal, we formally design predictive analytics and develop two frameworks using mobility data captured

from in-store sensors.

In the first part, we introduce a traditional machine learning model with carefully designed hand-

crafted features. We design extensive handcrafted features using semantic areas of the stores, and we

investigate the predictive powers of feature groups and semantic levels of areas. We confirm the ef-

fectiveness of considering customer mobility by showing the performance improvement of 4.7–24.3%.

Furthermore, we provide an in-depth analysis regarding the effect of the data collection period as well

as missing customers. Throughout this chapter, we look forward to sharing a series of processes to solve

the predictive analytics problem by finding the right features.

In the second part, we introduce a survival analysis model powered by a deep architecture. We

propose this model to challenge more realistic prediction settings having partial observations with the

imbalanced distribution. Unlike the framework in the first part, our new SurvRev model can predict the

event rate of the next 365 days for each visit. We are able to handle partial observations by survival

analysis, and the underlying deep learning architecture effectively learns the hidden representation of

customers and their visits. By optimizing a custom loss function, our SurvRev model can be tuned



for various prediction purposes. Throughout this chapter, we introduce our various efforts to refine the

model and verify its superiority over other revisit prediction models.

We successfully apply our models to mobility datasets collected from seven flagship stores in down-

town Seoul, including more than 5.7 million visits over 2.5 years. For fertilizing research, we also release

a benchmark dataset of customer indoor movement patterns. We hope that our research and datasets

can be used for offspring studies that require understandings of customers’ shopping patterns.

Keywords Revisit Prediction, Human Behavior Prediction, Predictive Analytics, Retail Analytics,

In-Store Motion Pattern Analysis, User Modeling, Sensor Data, Mobility Data, Feature Engineering,

Data Mining, Machine Learning, Deep Learning, Survival Analysis, Longitudinal Data,
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Chapter 1. Introduction

Significant part of the total purchasing activity still happens in the off-line market. And there is an

increasing demand for offline retail analytics. By targeting the potential loyal customers who are likely

to revisit, merchants can considerably save promotion cost and enhance return on investment [88]. Then,

how can we detect a customer who is willing to visit a store again, without performing extensive surveys?

Is it really possible to predict a customer’s intention to revisit the store without knowing their purchase

history, store satisfaction, age, or even their residence location? Can mobility data be useful for predict-

ing revisits? How long should we collect the data to perform revisit analysis? Answers to such questions

are vital to retail industries and to give a further direction to marketers, merchants, and retail analysts.

Figure 1.1: Capturing customer mobility in off-line stores1.

1.1 Main Achievements and Contributions

Get closer than ever to your customers.

So close that you tell them what they need well before they realize it themselves.

— Steve Jobs

My thesis focuses on the revisit prediction task in the domain of off-line retail analytics. Customer

mobility data is the main resources to investigate customer revisit in this study since the customer

mobility data becomes a relatively easy-to-obtain data source, which comes with a large scale. We

choose revisit as our prediction objective since we are able to track it by sensors but we could not obtain

customer’s purchase record from our clients. Besides, the revisit is a good proxy for estimating customer

lifetime value and a meaningful measure by itself. Unless there are no previous studies which aligned

with customer revisit and their mobility, it is well known that motion patterns unconsciously reflect

1Image courtesy of Walkinsights.
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consumer’s interest in and satisfaction with the store [54]. Therefore, our key task is to find patterns

that affect a customer’s revisit.

Of course, people go everywhere and tracking millions of people all days will be costly. So we reduce

the scope of our research to utilize the movement patterns of customers inside the target stores. In this

way, tracking customer behavior in and around the store becomes feasible by installing dozens of sensors.

Naturally, we focus on how customers’ behaviors in the store relate to their future revisit. In order to

carry out this study, we obtain fine-grained indoor mobility dataset of seven flagship stores over 7–33

months, collected by dozens of in-store sensors for each store. Figure 1.1 illustrates how can we capture

customer movements in the store.

We design predictive analytics of revisit prediction: a classification task to predict customers’ inten-

tion to revisit, and a regression task to predict customers’ future revisit interval. In this thesis, we intro-

duce two different approaches to tackle our problem. A brief summary of our contribution is as follows:

• Revisit prediction by designing features (§ 3): To predict customer revisit, we focus on

finding effective feature sets from their motion patterns. We design ten groups of features and

utilize five different semantics. We confirm the effectiveness of our features by achieving 64–80%

accuracy on binary classification task, with the performance improvement of 4.7–24.3% compared

to baselines. We also show that our prediction framework is robust even if we miss the footage

of large number of users. Moreover, we show how the performance changes as the data collection

time period gets longer. Figure 1.3 shows the essence of above four illustrative findings.

• Revisit prediction by designing models (§ 4): We design a deep survival model that works

in a more realistic environment. Our model successfully predicts revisit rates for next time horizon

by encoding each visit and managing personalized history. By applying survival analysis concepts,

we smoothly handled censored visits, that caused huge data imbalance to led our previous ap-

proach to test in a downsampled prediction scheme. Our model is also free from data distribution

inconsistency according to the ratio of training and testing set length.

In addition to the ones we listed above, we share diverse findings around the revisit prediction task.

In Chapter 3, We investigate the predictive powers of the feature groups and semantic levels of areas.

We address the problem of data inconsistency caused by Wi-Fi turn-off rate. In this respect, we develop

an approach for revising the probability of being group customers in the data. And we point out the

difficulties of securing prediction accuracy in spite of having a noticeable difference between the two

groups of customers. We also show that the overall prediction performance can largely depend on the

visit statistics of the dataset. In Chapter 4, we talk about the prediction settings that should be kept

in order to be used immediately in business. In addition to explaining the various objective functions in

the revisit prediction task, we explain how each loss function optimizes its objective function. We show

the effectiveness of our model by comparison with survival analysis models, deep learning models as well

as our previous framework.

2



Table II: Description of the representative features according to the data sources and feature groups. The �indicates the best semantic level
to describe each feature. For features with multiple �, the values of the features at each level are different, thus having different meanings.

Data sources Feature groups Twenty representative features
(Among 866 features of store E GN)

Semantic level of features

Sensor Category Floor Gender In/Out None

Moving pattern of
the visit

Overall statistics
[OS] (IV-A1)

f1 = Total dwell time �
f2 = Trajectory length � � � �
f3 = Skewness of dwell time of each area � � �

Travel Distance/
Speed/Acceleration
[TS] (IV-A2)

f4 = Total distance traveled inside the store �
f5 = Speed based on transition time � � � �
f6 = First-k HWT coefficients of acceleration � � � �

Area preference
[AP] (IV-A3)

f7 = Coherency of dwell time for each level � � �
f8 = Top-k-area dwell time � � � �

Entrance and Exit
pattern [EE]

f9 = Exit gate �
f10 = Number of previous re-entry on that day �

Heuristics [HR] f11 = Wears clothes but does not buy �
Statistics of each
area [ST]

f12 = Number of time sensed in the area � � � �
f13 = Stdev of dwell time for the area � � � �

Temporal
information of the
visit

Time of visit [TV] f14 = Day of the week �
Upcoming events
[UE] (IV-A8)

f15 = Remaining day until the next sale �
f16 = Number of holidays for next 30 days �

Occurrences
before the visit

Store accessibility
[SA] (IV-A9)

f17 = Number of days since the last access �
f18 = Average interarrival time �

Simultaneous visits Group movement
[GM] (IV-A10)

f19 = Presence of companions �
f20 = Number of companions �

for the near future, [SA] uses the occurrences of the customer
before making this visit, and [GM] considers other visits at
the same time.

For seven stores, the total number of generated features
varies from 220 to 866 depending on the number of areas and
the number of semantic levels used. T2, T3, T4–level features
are generated only for two stores: E GN and E SC, where we
continuously tracked their floor plans during data collection
periods. In Table II, we introduce 20 representative features
to best describe the characteristic of each feature group. On
the right side of the table, the corresponding semantic level
for each feature is marked.

Figure 3 and Figure 4 display meaningful relationships
between the feature values of f1, f7, f9, f15, and f17 with
the average revisit intention rate E[RVbin(v)]. By dividing
total visits into 20 equal bins according to feature values, we
can identify the association between feature values and revisit
rates without being affected by outliers.

A. Feature Descriptions

1) Overall Statistics [OS]: OS features represent the
high-level view of a customer’s indoor movement patterns,
and therefore, the predictive power is relatively strong. By
considering the trajectory as a whole, we can extract features
such as total dwell time (f1), trajectory length (f2), and
average frequency of each area. We also apply skewness (f3)

or kurtosis to measure the asymmetric or fat-tail behavior of
the dwell-time distribution of each area.

2) Travel Distance, Speed, and Acceleration [TS]: TS fea-
tures are in-depth information that needs to be explored [16].
To approximate the physical distance (f4) traveled by the
customer, we created a network based on the physical connec-
tivity between areas. We used the transition time to obtain the
shopping speed (f5), and we modeled the acceleration from
the speed variation between consecutive areas. A time series
analysis using the Haar Wavelet Transform (HWT) [17] was
performed, as well as statistical analysis, to determine how
the customer’s interests changed with time. We included the
first-16 HWT coefficients (f6) in our feature set.

3) Area Preference [AP]: With AP features, it is possible
to identify the difference between a customer viewing a
specific area with high concentration and a person shopping
lightly throughout the store. The area name and dwell
time (f8), and its proportion over the total dwell time of the
top-3 areas at each level are included in the basic features.
The coherency of each level (f7) determines the consistency
of the customer’s behavior. The definition of the coherency
metric is the proportion of time spent in the longest staying
area. This metric is effective to capture regular customers who
know the store’s layout and go directly to the desired area.

4) Entrance and Exit pattern [EE]: Interestingly, customers
leaving through the back door (f9) revisited 13.6% more than

220

(a) Extensive feature engineering (§ 3).

Revisit labels

𝑣1 𝑣2

Train period Test period𝑡1 𝑡2

?

𝒗𝟑

LSTMs LSTMs LSTMs

FC Layers

(120 days, False)

Rates for next 365-day

0

Low-level 
visit encoder

event rate predictor
High-level

Loss Minimization

120 days

(b) Deep survival model (§ 4).

Figure 1.2: Key contributions of the thesis.
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(d) Model robustness on missing customers.

Figure 1.3: Effectiveness of mining customer mobility for revisit prediction. (a) Our model shows high

prediction accuracy around 70% even when it comes to predicting the revisit intention of first-time

visitors. (b) Performance improvement of our model by using the feature sets against two baselines.

(c) To guarantee the revisit prediction performance, we need sufficient amount of data. (d) 95% of the

performance of our model is maintained with a very small fraction of the dataset. (Full results in § 3.3.2

and § 3.3.3).
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1.2 Thesis Organization

The rest of this dissertation is organized as follows. In Chapter 2, we introduce the importance

of our revisit prediction problem with our data collection efforts. In Chapter 3, we present our feature

engineering approach to tackle this problem. We begin Chapter 4 by emphasizing the importance of

realistic prediction settings and introduce the effectiveness of our new deep survival analysis approach.

In Chapter 5, we provide conclusions and discuss future directions. An overview of this dissertation can

be seen in Table 1.1.

Table 1.1: Overview of the thesis.

Chapter Contents

(§ 2) Customer Revisit

Prediction

(§ 2.1) Motivation and overview

(§ 2.2) Related work on revisit prediction

(§ 2.3) Indoor data description

(§ 2.4) Problem definition

(§ 3) Revisit Prediction

by Feature Engineering

(§ 3.1) Motivation: Importance on feature engineering

(§ 3.2) Feature engineering

(§ 3.3) Experiments

(§ 4) Revisit Prediction

by Deep Learning

(§ 4.1) Motivation: Towards practival application settings

(§ 4.2) Background on survival analysis

(§ 4.3) Deep survival model

(§ 4.4) Experiments

(§ 5) Conclusions

(§ 5.1) Contributions

(§ 5.2) Impact and achievements

(§ 5.3) Vision and future directions

Appendices

(§ A) Benchmark data

(§ B) Preliminary neural network approaches

(§ C) Application to points-of-interest check-in datasets
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Chapter 2. Customer Revisit Prediction

Recently, there is a growing number of off-line stores that are willing to conduct customer behavior

analysis. In particular, predicting revisit intention is of prime importance, because converting first-time

visitors to loyal customers is of prime importance, because converting first-time visitors to loyal customers

is very profitable. However, revisit analyses for offline retail businesses have been conducted on a small

scale in previous studies, mainly because their methodologies have mostly relied on manually collected

data. With the help of noninvasive monitoring, analyzing a customer’s behavior inside stores has become

possible, and revisit statistics are available from the large portion of customers who turn on their Wi-Fi

or Bluetooth devices. Using Wi-Fi fingerprinting data from ZOYI, we propose a feature engineering

framework and a deep learning framework to predict the revisit intention of customers using only signals

received from their mobile devices. Our frameworks showed feasibility to predict revisits from customer

mobility captured by in-store sensors that have not been considered in previous marketing studies.

2.1 Motivation and Overview

We see our customers as invited guests to a party, and we are the hosts.

It’s our job every day to make every important aspect of the customer experience a

little bit better.
— Jeff Bezos

How can we detect a customer who is willing to visit a store again? More challengingly, how can we

capture intrinsic mobility patterns that represent future retention? In this study, we introduce a revisit

prediction framework using only Wi-Fi signals collected by in-store sensors.

By identifying the potential loyal customers who are likely to revisit, merchants can considerably

save promotion cost and enhance return on investment [88]. Many studies in recent years have focused

on online stores and online text reviews with the help of a data provider [72, 21, 116]. In contrast,

the analysis of revisit intention in the offline environment has not advanced significantly over the last

few decades. The main reason for this lack of progress lies in the difficulties of collecting large-scale

data that is closely related to key attributes of revisiting, such as customer satisfaction with products,

service quality, atmosphere of the store, purchase history, and personal profiles [116, 110, 33]. The first

three attributes are subjective information that is difficult to capture in the offline environment, and

the last two attributes are considered as confidential corporate information that is not easily accessible.

Owing to these limitations, research on customer revisits in offline stores has been conducted through

surveys. These studies help us gain an understanding of underlying hypotheses that affect customer

satisfaction. However, because of their inherent limitations of a small sample size, we believe that their

findings cannot be easily generalized. Therefore, the large-scale customer analyses for revisit prediction

are urgently needed.

With the advance of sensing technologies such as radio-frequency identification (RFID) [37, 106],

Bluetooth [122], or Wi-Fi fingerprinting [109], we are capable of collecting high-frequency signal data

without installing any applications on customer devices [87, 96, 98, 99]. These signals can be converted

to fine-grained mobility data. Using such data, noninvasive monitoring of visitors has been carried
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out in different settings, such as in museums [122] and supermarkets [114], providing empirical findings of

customer behavior, such as finding the corridor where the most visitors pass or the area where the visitors

stay the longest. Nowadays, collecting data in a certain physical boundary is called as geofencing [102]

and the market size is accounted for USD 8 billion in 2014 and is expected to reach 40 billion by 2019 [90].

Various retail analytics companies installed their own sensors to geotrack real-time mobility patterns of

customers in their clients’ stores. Their proprietary solutions provide visitor monitoring results, such as

funnel analysis or hot-spot analysis results through a dashboard (Figure 2.1). In addition, it is expected

that huge amounts of shopping behaviors will be generated in cashier-less stores introduced by the

enterprises such as Alibaba and Amazon.

(a) Daily visitor count. (b) Outside traffic by hour.

(c) An example report showing several statistics.

Figure 2.1: Dashboard examples of a retail analytics company Walkinsights.

This study moves one step forward, from visitor monitoring to customer revisit prediction. We pro-

pose a systemic framework for predicting the revisit intention of customers using Wi-Fi signals captured

by in-store sensors. It is known that motion patterns unconsciously reflect consumer’s interest in and

satisfaction with the store [54]. However, among many attributes, customer mobility is not well known

to determine their life-time value. Therefore, the key challenge is how to generate the most effective set
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Figure 2.3: Revisit statistics of store E GN. E[RVbin(vk)] denotes the average revisit rate of the group

of visitors who visit k times.

of features from the Wi-Fi signals and to find the best model to learn from those features. Figure 2.2

illustrates the overall procedure of the revisit prediction framework. If a customer comes into a store,

the framework detects his/her Wi-Fi signals and transforms the signals to a visit and an occurrence

through the data processing steps. From the customer’s visit and previous occurrences, we designed

features to describe his/her motion patterns. Finally, we can predict his/her revisit behavior, using a

trained model. We benefit from large-scale customer mobility data captured by in-store sensors. Seven

flagship stores in downtown Seoul were carefully selected to cover various shop categories. The number of

unique customers collected in the seven stores reaches 3.75 million. The data is very attractive because

we can capture approximately 20–30 % of the customer mobility data without customer interruption.1

Furthermore, the data collection period is 1–2 years, which is long enough to study revisit behaviors.

Figure 2.3 illustrates the observed revisit statistics during the data collection period in one of our

store. The black line denotes the number of observations |vk| of kth visits (vk), and the gray line denotes

the average revisit rate E[RVbin(vk)] of all vk’s. The fact that the |v5| is 100 times less than |v1| implies

that it is very difficult to retain first-time visitors as regular customers. It also describes how valuable it

is to raise the revisit rate of first-time visitors that account for 70 % of total customers,2 since it is well

1Customers carrying a smartphone with their Wi-Fi on are detected by the Wi-Fi positioning system. The proportion of

users in their twenties who keep their Wi-Fi on is 29.2 %, according to a conducted by Korea Telecom in July 2015 [128].
2In Figure 2.3, the ratio of the first-time visitors in store E GN is over 70 %. We made a few assumptions to interpret the

data as it is and will discuss them in Section 3.3.3.
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known that retaining first-time visitors is extremely important. By increasing 5% in the retention rate

of the customer results in an increase of 25-95% in profit3. Therefore, the proposed framework should be

capable of handling instances without having any history, which is well known as a cold-start problem.

In the following two chapters, we introduce our two approaches to predict customer revisit. Our

experiments demonstrate that our frameworks successfully predicts the revisit, especially for first-time

visitors. The inputs for prediction framework are all derived from Wi-Fi signals with minimal external

information (dates of public holidays, clearance sales). Thus, we expect that the prediction power will

rise significantly by adding private data such as personal profiles and purchasing patterns.

Before moving to the main part, we introduce some backgrounds in the remainder of this chapter.

In Section 2.2, we summarize previous studies related to this thesis. In Section 2.3, we describe the

datasets used. Then we introduce the key terms and formalize our problem in Section 2.4.

2.2 Related Work

In this chapter, we discuss previous works that related to this thesis. We start this chapter by intro-

ducing works belongs to revisit studies and efforts in retail analytics. Then, we summarize works related

to customer research and indoor analysis. Last, we broadly review the techniques used in trajectory

mining and POI recommendation task.

2.2.1 Revisit Studies

Majority of previous studies related to revisit intention or repurchase behaviors, qualitatively studies

several causes to affect customer’s behaviors through surveys. The typical approach is as follows. First,

researchers sample several hundred customers to fill out surveys then researchers perform correlation

analysis to check which factors are related to revisit or repurchase. In outdoor brands, engagement

and trust have a positive correlation with revisit intention [39]. And the salesperson’s service affects

customer’s satisfaction of the offline store, and convenience of mobile payments affects the store’s overall

satisfaction level. Furthermore, customer’s satisfaction level has a strong correlation with revisit inten-

tion [71]. Positive sentiments lead customers to repurchase although they have some negative sentiments

on stores [62]. These factors are intuitive when considering customer satisfaction or loyalty. However,

the required information is subjective so it can be only achieved through surveys, which is difficult to

collect in large quantities. On the other hand, in this thesis, we confirmed the association between the

customer revisit and their mobility which are not discovered in the previous studies. Most importantly,

the mobility data can be collected with scale. In the next section, we introduce researches and companies

that have gathered their offline data and created new horizons of retail analytics.

2.2.2 Data Collection Efforts

Recently, RFID [37, 106], Bluetooth [122], or Wi-Fi fingerprinting [109], enable us to collect high-

frequency signal data without installing any applications on customer devices [87, 96, 98, 99]. These

signals can be converted to fine-grained mobility data. Using such data, noninvasive monitoring of

visitors has been carried out in different settings, such as in museums [122] and supermarkets [114],

providing empirical findings of customer behavior, such as the corridor where the most visitors pass or

the area where the visitors stay the longest. Nowadays, collecting data in a certain physical boundary

3https://hbswk.hbs.edu/archive/the-economics-of-e-loyalty
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is called as geofencing, and the market size is accounted for USD 8 billion in 2014 and is expected to

reach 40 billion by 2019 [90]. Companies such as ZOYI4, VCA5, RetailNext6, Euclid7, ShopperTrak8, and

Purple9 have their proprietary monitoring solutions and provide a dashboard to their clients. Using their

monitoring technology, they perform a funnel analysis to identify a ratio of customer over outside traffics.

These statistics is being used to determine which area it would be best to open a new store. Another

company named Loplat10 collects customer foot traffic in a different way. Without installing sensors,

they collect a Wi-Fi fingerprint snapshot from the store and use it as an identifier of each store. Based

on the collected Point-of-Interests (POI) information, they provide their location recognition software

development kit to third party applications, for other companies to add location-based features on their

products. In this way, Loplat also collect the customer mobility data from third party applications. They

recently launched a B2B service, which provides both customer analysis and marketing campaigns.

2.2.3 Behavior Analysis of Shoppers

Park et al. [85] examined the factors of route choice in three clothing outlets by tracking 484 cus-

tomers. They considered spatial characteristics of the outlet, types of customers, and their shopping

behaviors. For the perspective of interior design, they analyzed the passage types of shopping centers,

the location of the main entrance, and a direction of the main escalator to find relations with customer

route choices. They were interested in the relation between the length of hallway and in-depth shopping

rate. In addition to that, they studied movement patterns of different customer groups. Their anal-

ysis helps us to develop diverse features in our revisit prediction framework. In the grocery store, an

RFID-based tracker system with shopping carts enabled Hui et al. [37] to find evidence for interesting

behaviors, such as consumers who spent more time in the store become more purposeful. They also

reveal another interesting behavior through their collected data, which is, after purchasing virtue cate-

gories, presences of other shoppers attract consumers yet reduce their tendency to shop. Yada et al. [114]

applied a character string analysis techniques EBONSAI originally developed in the field of molecular

biology. They convert each shopping area into a character to apply their algorithm in order to discover

purchasing behaviors. Hwang et al. [38] introduced process mining techniques to understand customer

pathways. The Petri-net model learned by inductive learning algorithms provides a formal representation

of the shopping path of customers. With the collaboration of sensor providers as well as their clients,

they showed customers’ behavioral patterns and sales revenue were changed according to the change of

store display and the process model according to them also changed. This study is also meaningful in

terms of that they utilized the Kolon store dataset collected by ZOYI corporation, a data provider11 of

seven indoor datasets for this thesis. Although these studies did not focus on customers’ revisit, they

were valuable resources for us to develop features that describe customers’ motion patterns. Currently,

Alibaba’s Hema Xiansheng12 and Amazon Go13 are the most widely known “future retailers” by breaking

4https://walkinsights.com/
5https://www.ucountit.com/
6https://retailnext.net/en/aurora/
7https://www.ucountit.com/
8https://www.shoppertrak.com/
9https://purple.ai/
10http://loplat.com/
11We purchased the data access right of the seven stores.
12https://www.freshhema.com/
13https://en.wikipedia.org/wiki/Amazon_Go
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the traditional retail experience by introducing technology. We expect that there will be tremendous

opportunities to study customer behavior patterns during their shopping.

2.2.4 Behavior Analysis in Other Indoor Places

Traditionally, the analysis of customers’ indoor movement and connections to space has been con-

ducted in the area of architecture or interior design. Especially in the case of museums, various movement

patterns were captured to rearrange the exhibits to enhance the satisfaction of visitors [69, 68, 115, 44, 67].

In these researches, itinerary tracking and time tracking techniques [105, 115] were used to investigate

the spectator’s behavior in exhibition halls. With the manual tracking technique, one can capture very

accurate visitor’s movement and the status of the exhibition space, which helped them to manage exhi-

bitions. For example, the extent of visibility of the display was studied [70]. Moreover, the behavior of

passive visitors was utilized to arrange the main display [44]. They concluded that visitors are influenced

by the continuity in display within their view, since they select their movements in an efficient way be-

tween the exhibition halls. These studies were conducted with a limited data around several hundreds of

customers. Nonetheless, concepts and analysis techniques presented in these existing study were valuable

to find the insights the large-scale data that we have.

With the help of noninvasive monitoring, visitor studies in the museum have come to a new phase.

Yoshimura et al. [122] collected more than 80,000 devices’ footprints by installing 8 beacons in main hall-

ways of the Louvre Museum and analyzed the most used trajectories between exhibition halls to mitigate

a micro-congestion inside a museum. By tracking visitors’ movements, the Guggenheim museum [31] in-

creased customers’ engagement with the museum by making smarter curatorial decisions. Both museums

and clothing stores are places where customers’ indoor mobility data are meaningful resources to study

for customer satisfactions. We expect the framework we have presented is also applicable in the museum

visitors studies.

2.2.5 Predictive Analytics Using Trajectories

Using trajectories, next location prediction is one of the most studied topics in the computer science

community. The studies using GPS-based trajectories are introduced in this paragraph. To predict the

next location, frequent trajectory patterns [82], nonlinear time series analysis of the arrival and residence

time [100], HMM [81] were applied. The results support the prediction of the next location using partial

trajectories is feasible, along with the regularity studies of human mobility [76, 26, 103]. Within the

subject of predicting the next location, the prediction of the final destination of a taxi [7, 78] was also

actively studied after the 2015 ECML/PKDD competition [45].

Next location prediction study is also well known in the field of Point-of-interest(POI) recom-

mendation. The main data sources are check-in datasets in location-based social networks such as

Foursquare [118] or Gowalla [74], where trajectories were actively recorded by the users. The survey [124]

gives the basic understandings of the difference between traditional recommendation tasks and POI rec-

ommendation tasks, and they classify POI recommendation algorithm into four categories: pure check-in

based, geographical, temporal, and social-influenced. Yiding et al. [73] extensively evaluated 12 state-of-

the-art POI recommendation models to better understand and utilize models in various scenarios. They

also summarized the characteristics of 41 existing papers from 2010 to 2016. From their observation,

top 3 outperform models [64, 75, 66] are based on implicit feedback models, and consider geographical

information. Details on each model can be found on the above-mentioned experimental paper [73].
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The main difference between our study and previous studies are a prediction objective. We studied

the customers’ revisit intentions in the offline stores using indoor trajectories and check-in traces. Thus,

our model focused on predicting revisits instead of predicting next locations. As far as we know, there

are no studies of predicting revisit intention using semantic trajectories captured by in-store sensors.

2.3 Indoor Data Description

In this section, we introduce our customer mobility data captured from off-line stores. The number

of customers in our data is very high, and the collection period is long enough to obtain reliable results.

Throughout this section, we share some statistics of our datasets and introduce necessary preprocessing

to find meaningful semantics from the raw Wi-Fi signals.

2.3.1 Data Collection

We collected data from seven flagship stores14 located in the center of Seoul. Each of these stores

is one the largest stores of each brand, consisting of several floors. These stores are known to be the

busiest stores in Korea except for some complex malls or department stores. Because of their location

and size, these stores have up to 10,000 daily visitors. For example, our target store E GN is a four-story

building located on the side of a Gangnam boulevard where two million people walk by each month15.

Store E SC is located at the ground floor of a major department store in the downtown area of Seoul,

which is also connected to one of the busiest subway stations used by college students. The main target

customer of our stores is the young generation, ranging from the age of high teens to mid-twenties. Store

L MD and store O MD are located at the main street of Myeongdong area, which is the most popular

district in Korea by foreigners. Table 2.1 presents the statistics of the seven datasets, and Figure 2.5

illustrates the location of sensors and categories of two stores E GN and E SC to give readers a sense of

how sensors are installed throughout the store.

Revisit Statistics of Seven Stores

Figure 2.4 illustrates the observed revisit statistics of seven stores during the data collection period,

which is a full version of Figure 2.3. The black line denotes the number of observations |vk| of kth

visits (vk), and the gray line denotes the average revisit rate E[RVbin(vk)] of all vk’s. Overall, the visit

count distribution follows a power-law distribution, and as the number of visits increases, the revisit

rate also tends to increase to certain threshold. All seven stores seem to have difficulties of retaining

first-time visitors as regular customers. Even if the stores with data collection period nearby two years,

such as L GA, L MD, and O MD, the number of frequent visitors (more than 5 times) is less than 10 %

of the number of first-time visitors.

2.3.2 Preprocessing

Raw data—Wi-Fi Signals

To collect Wi-Fi signals, we utilized ZOYI Square sensors developed by WalkInsights16. The in-

stalled sensors enable us to collect Wi-Fi signals from any device that turns on its Wi-Fi. A single Wi-Fi

14Owing to a nondisclosure agreement, brand names and exact locations cannot be disclosed, and neither the data.
15These statistics were measured from September 18, 2017 to October 17, 2017.
16https://walkinsights.com/sensors
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(a) Floor plan of store E GN. Store E GN has five semantic
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(b) Floor plan of store E SC.

Area Description

M.O Men’s office wear

M.C Men’s casual wear

M.A Men’s accessories

W.O Women’s office wear

W.C Women’s casual wear

W.UW Women’s underwear

W.New Women’s new arrival

L.C Limited collection

FR Fitting room

CS Checkout counter

(c) Area explanation.

Figure 2.5: Location of sensors and categories of two stores considered in the study. Wi-Fi icons indicate

the location of the sensors, and the category names for each section are described in (c).

signal includes an anonymized device ID, sensor ID, timestamp, and its Received Signal Strength Indi-

cator (RSSI) level [99]. RSSI is an indication of signal strength received by sensors, which is represented

in a negative value. The closer the RSSI level is to 0, the clearer the signal is. Signals are collected

continuously from each device at fairly short intervals, which are less than 1 s. Since the size of the signal

data is considerably large – 1.3 TB, we carried out a conversion process to remove redundant signals and

combine into Wi-Fi session logs. The leftmost part of the Figure 2.7 illustrates examples of Wi-Fi signals

and the main preprocessing concept, which will be explained in the following section.

Signal to Session Conversion

With the received signals, we approximate the location of a device by indoor positioning. We call this

a signal-to-session conversion. A row of Wi-Fi session data becomes an element of a semantic trajectory

that includes device ID, area ID, and dwell time. Predefined RSSI thresholds are utilized for signal-

to-session conversion. These thresholds are controlled during the installation and the values guarantee

that the device is in the vicinity of a sensor. The logic of this conversion is simple. For instance, a new

session is created when a sufficiently strong RSSI is received for the first time. The session continues if

the sensor receives consecutive strong signals, and it ends if the sensor no longer receives strong signals.

The session also ends if another sensor receives a strong RSSI from that device.

15



Location Semantics

It is also possible to detect the semantic location of a customer by taking advantage of the semantic

coherency of contiguous sensors. For example, we can identify if the customer is looking at daily cosmetics

or she/he is in a fitting room. Additionally, we can describe a customer’s location to floor-level or gender-

level semantic areas. Moreover, we generate in/out level areas by examining whether the customer is

inside the store, nearby the store (up to 5 m), or far away from the store (up to 30 m). This becomes

possible by controlling multiple RSSI thresholds to activate detection with weaker signals. Therefore, an

entity of Wi-Fi session data encompasses a customer’s dwell time not only in the area corresponding to

sensors, but also in the wider semantic areas. By integrating the Wi-Fi sessions with different semantics,

we construct a multilevel semantic trajectory to describe each visit as illustrated in Figure 2.7.

Additional Data Cleaning Steps

There are several additional preprocessing steps that we would like to mention. We removed the

top-100 most frequent visitors as outliers. Perhaps those outliers are retail clerks or courier delivery

persons. We considered the people who stayed less than 60 s as pedestrians who simply walk through

the store, and therefore we removed these trajectories as well. Besides, we removed the data received

from Apple devices, which follow a MAC addresses randomization policy after iOS 8.0 [80], which makes

infeasible to identify the same customer.

Interval Between Sessions: Defining a Threshold for Customer Revisits

As explained in Chapter 2.3.2, if a customer has stayed within the radius of a particular sensor, a

single Wi-Fi session of the customer is created. Multiple sessions are created for that customer if he moves

to the other area, or he left and comes back to the store again. Here, we consider a session interval between

two consecutive Wi-Fi sessions, which is defined as a time difference between the end of the previous

session to the start of the current session. Figure 2.6 shows a session interval distribution of our datasets.

Interestingly, the interval distribution between sessions has a multi-modal form with three peaks.

• The first mode contains intervals between 0.01–100 s and the peak appears in 1 s. This set of records

indicates intervals between consecutive sessions taken on the same visit. In other words, those

represent transition time between two indoor spaces while customers are walking around the store.

• The second mode contains intervals between 10 min to 10 h and a relatively small peak appears

around 2 h. This represents customer revisit on the same day. There might be diverse reasons to

do so. For instance, a customer who comes back to the store to buy items he dibs on.

• The last mode contains intervals over 10 h. Intervals in this mode refer to the case of returning to

the store on another day. Through this analysis, we have taken a 10 h interval threshold to set the

criteria for defining a new visit. Revisit in our study means the corresponding intervals in this case.

2.4 Problem Definition

In this section, we formally define the main concepts introduced in our paper. First, we define a

multilevel semantic trajectory (T) that expresses a customer’s moving pattern, and define visit (v) and

occurrence (o) using T. Next, we define the revisit interval (RVdays) and the revisit intention (RVbin),

which are labels in our prediction model. Finally, we introduce the revisit prediction problem.
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Figure 2.6: A session interval distribution.

2.4.1 Key Terms and Concepts

Multilevel Semantic Trajectory

Multilevel semantic trajectory describes a customer’s motion pattern with multiple levels of semantic

areas.

Definition 2.4.1. (Semantic trajectory [117]) A semantic trajectory T is a structured trajectory of

size n (n ≥ 1) in which the spatial data (the coordinates) are replaced by semantic areas, that is,

T = {s1, s2, . . . , sn}, where each element ( = a session) is defined by si = (spi, t
(spi)
in , t

(spi)
out ). Here, spi

represents the semantic area. t
(spi)
in is the incoming timestamp for entering spi, and t

(spi)
out is the outgoing

timestamp for leaving spi. �

If the dwell time of each area t
(spi)
out − t(spi)in is shorter than 5 s considering walking speed and the

5 m distance between adjacent sensors, a customer is likely to pass that area without consideration, and

thus, we delete the element from the trajectory. Every timestamp in a semantic trajectory should appear

within the same day.

Definition 2.4.2. (Multilevel semantic trajectory) A multilevel semantic trajectory T = {T1, . . . , Tl}
is a set of semantic trajectories with l (l ≥ 1) different semantic levels. Each semantic trajectory Ti
represents the same motion pattern from a customer using semantic areas of level i. �

For our indoor environment, we utilized semantic levels inside the store, except for the highest level

l indicating the in/out level. The total dwell time of Tl is always longer than T1, . . . , Tl−1, because the

in/out mobility utilizes weak signals that can be captured for a longer period than the strong signals

used for indoor behavior.

Visit and Occurrence

A set of semantic trajectories describes each visit and occurrence, as defined in Defs 2.4.3 and 2.4.4.

Definition 2.4.3. (Visit) A visit v is a unit action of entering the store. vk(c, [ts, te],T) is a kth visit

by customer c, who is sensed from ts to te, of which the motion pattern is described with a multilevel

semantic trajectory T. �

We consider only the visits that are long enough to represent meaningful behavior. For the sensor-

level trajectory T1, the total dwell time te − ts should be greater than 1 min, because it takes less than
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Figure 2.7: Generation of multilevel trajectories to predict customer revisit: Using noninvasive moni-

toring, customer Wi-Fi signals are collected. These are then transformed into a sensor-based trajectory,

and further summarized into categories, floors, genders, and surrounding areas. The features extracted

from these multilevel trajectories effectively determine the characteristics related to customer behavior.

1 min to go through the store. The data preprocessing thresholds are empirically configured depending

on the size of a store and the number of sensors.

Definition 2.4.4. (Occurrence) An occurrence o is a special case of a visit that represents a unit action

of lingering around the store without entering. ok(c, [ts, te],T) is a kth occurrence by customer c, who is

sensed from ts to te, of which the mobility is only captured in the outdoor area with T = {∅, . . . , ∅, Tl}.
�

Although we did not have any personal information such as the customer’s residence, we could

measure his/her accessibility to the store through the occurrence. For each visit vi, we use a set O of

previous occurrences {O | ok ∈ O, ∀ ok(te) < vi(ts)} as a reference to generate store accessibility features

[SA], which will be explained in Section 3.2.2.

Revisit Interval and Revisit Intention

If a customer revisits the store after d days, the previous visit v of the customer has a d-day revisit

interval, denoted by RVdays(v) = d, and a positive revisit intention, denoted by RVbin(v) = 1, as in

Definition 2.4.5.

Definition 2.4.5. (Revisit interval and revisit intention) If two consecutive visits vk = vk(ci, [tk,s, tk,e],Tk)

and vk+1 = vk+1(ci, [tk+1,s, tk+1,e],Tk+1) of customer ci meet the condition tk,e < tk+1,s, the revisit in-

terval RVdays(vk) and the revisit intention RVbin(vk) of the former visit vk are as follows:

RVdays(vk) = # days of tk+1,s − tk,e
RVbin(vk) = 1

(2.1)

If a visit vk does not have any following revisit, then

RVdays(vk) =∞
RVbin(vk) = 0

(2.2)
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2.4.2 Predictive Analytics

Our predictive analytics problem is now formally defined as follows:

Customer Revisit prediction

Task: Given a set of visits Vtrain = {v1, . . . , vn} with known revisit intentions RVbin(vi) and revisit

intervals RVdays(vi) (vi ∈ Vtrain), build a classifier C that predicts unknown revisit intention

RVbin(vnew) and revisit interval RVdays(vnew) for a new visit vnew.
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Chapter 3. Revisit Prediction By Feature Engineering

Chapter based on work that appeared at ICDM 2018 [52] and the forthcoming KAIS journal [53].

In this chapter, we introduce our feature engineering framework to predict the revisit intention of

customers. In a binary prediction task with 50 % baseline prediction accuracy, we achieved 67−80 %

accuracy for all customers and 64−72 % accuracy for first-time visitors. The performance improvement by

considering customer mobility was 4.7–24.3 % over the baselines. We tried various classifiers and confirm

that LightGBM [49] was the most effective and efficient. Toward this goal, we study the predictive power

of each group of features and the effectiveness of each semantic level to show whether or not the trajectory

abstraction boost the predictability. Furthermore, we provide an in-depth analysis regarding the effect of

data collection period and present the robustness of our model on missing customers. Another important

thing to share is our efforts to resolve gaps that appear between data and actual phenomena. Lastly, we

report the unexpected prediction challenges even when the two groups of data show inherent differences

in a statistical sense.

3.1 Motivation

Coming up with features is difficult, time-consuming, requires expert knowledge.

“Applied machine learning” is basically feature engineering.

— Andrew Ng

It is important to understand that predictive analytics is not a magic. In most cases, the machine

learning algorithm can only extract meaning from the data that we give it. It does not have the wealth

of intuition that a human has, and subsequently the success of the algorithm can often hinge on how you

engineer the input features.

Feature engineering is the process of using domain knowledge of the data to create features that make

machine learning algorithms work. Feature engineering is fundamental to the application of machine

learning and it is often the most important step in the whole machine learning pipeline. If feature

engineering is done correctly, it increases the predictive power of any machine learning algorithm by

creating features from raw data that help facilitate the whole process.

Still, many winning solutions on data mining competitions are established on carefully designed

handcrafted features [72, 30, 46, 19]. Well-known champions in a data mining competition platform—

Kaggle agreed that applying feature engineering as much as possible is of prime importance in succeeding

in machine learning competition as well12. Any experienced professional can recall numerous times when

a simple model trained on high-quality data was proven to be better than a complicated model built on

data that was not clean.

To achieve our goal, we had to ensure that the Wi-Fi signals data contains relevant indicators for

the customer revisit prediction. Throughout this chapter, we show how we discover the relevant patterns

by elaborating our insights.

1http://bit.ly/competition-tip-giba
2http://bit.ly/competition-tip-kazanova
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The remainder of this chapter is organized as follows. We describe the characteristics of the features

in Section 3.2. In Section 3.3, we explain the experiment settings and present overall prediction results.

After we discuss the lessons and challenges obtained through the experiments, we conclude this chapter.

3.2 Key Contribution: Handcrafted Features

To have a multiperspective view of customer movements, we construct each visit as a five-level3

semantic trajectory, T = {T1, T2, T3, T4, T5}, where the levels correspond to sensor, category, floor,

gender, and in/out, respectively. We expect the pattern captured using multiple levels can be helpful

in predicting customer revisits Thus, some features were created for each semantic level. For example,

a customer c1 who made a recent visit v(c1, [ts, te],T) with |T1| = 20, |T2| = 3 are more likely to return

than a customer c2 with |T1| = 1, |T2| = 1, because c1 has longer trajectories than c2, which implies

that c1 has more interest in the store than c2. If c1’s occurrences T = {∅, ∅, ∅, ∅, T5} have been captured

on a daily basis, then c1 is likely to be a commuter to a nearby office, and their RVdays is likely to be

much smaller than a noncommuter’s E[RVdays]. In this example, |Ti| and the average interarrival time

are features to predict a revisit, generated from visits and occurrences, respectively. In the rest of this

section, we first give an overview of how all features are systematically generated and then introduce the

important features of each group in detail.

3.2.1 Overview of Features

Table 3.1 gives a summary of the features in our framework, which are self-explanatory. The first two

columns describe data sources used to extract features, leading to ten different feature groups. The first

six feature groups—overall statistics [OS], travel distance/speed/acceleration [TS], area preference [AP],

entrance and exit pattern [EE], heuristics [HR], and time of visit [TV]— are generated from the visit

itself. Upcoming events [UE], store accessibility [SA], and group movement [GM] features are generated

using certain references: Time of visit [UE] features use sales and holiday information for the near future,

store accessibility [SA] features uses the occurrences of the customer before making this visit, and group

movement [GM] features considers other visits at the same time.

For seven stores, the total number of generated features varies from 220 to 866 depending on the

number of areas and the number of semantic levels used. T2, T3, T4− level features are generated for two

stores: E GN and E SC, which we continuously tracked their floor plans during data collection periods.

In Table 3.1, we introduce 20 representative features to best describe the characteristic of each feature

group. On the right side of the table, the corresponding semantic level for each feature is marked. The

detailed number of features for each group and each semantic level is listed in Table 3.2, for two stores

E GN and E SC.

Figure 3.1 and Figure 3.2 display meaningful relationships between the feature values of f1, f7, f9,

f15, and f17 with the average revisit intention rate E[RVbin(v)]. By dividing total visits into 20 equal

bins according to feature value, we can identify the association between feature values and revisit rates

without being affected by outliers.

3For ease of exposition, this setting is specific to the datasets we have. The set of levels depends on the dataset and

application in hand as well as is orthogonal to our framework.
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Table 3.2: The number of features per group for two stores, E GN and E SC.

(a) Number of features for each group.

Feature groups Store E GN Store E SC

[OS] 121 121

[TS] 90 90

[AP] 64 59

[EE] 3 3

[HR] 8 8

[ST] 516 318

[TV] 31 31

[UE] 7 7

[SA] 24 24

[GM] 2 2

ALL 866 663

(b) Num. of features for each semantic level.

Semantic levels Store E GN Store E SC

Sensor level 297 189

Category level 244 236

Floor level 131 68

Gender level 82 82

In/Out level 74 50

(Temporals) 38 38

ALL 866 663

3.2.2 Feature Descriptions

In this section, we introduce the detail of each feature group used in our model. With the background

information for designing each feature, we show some correlations between features and customer revisits.

Overall Statistics [OS]

[OS] features represent the high-level view of a customer’s indoor movement patterns, and there-

fore, the predictive power is relatively strong. By considering the trajectory as a whole, we can extract

features such as total dwell time (f1), trajectory length (f2), and average frequency of each area. We also

apply skewness (f3) or kurtosis to measure asymmetric or fat-tail behavior of the dwell-time distribution

of each area.

Travel distance, Speed and Acceleration [TS]

[TS] features are in-depth information that need to be explored [85]. To approximate the physical

distance (f4) traveled by the customer, we created a network based on the physical connectivity between

areas. We used the transition time to obtain the shopping speed (f5), and we modeled the acceleration

from the speed variation between consecutive areas. A time series analysis using the Haar Wavelet

Transform (HWT) [104] was performed, as well as statistical analysis, to determine how the customer’s

interests changed with time. We included the first-16 HWT coefficient (f6) in our feature set.

Area Preference [AP]

With [AP] features, it is possible to identify the difference between a customer viewing a specific

area with a high degree of concentration and a person shopping lightly throughout the store. The area

name and dwell time (f8), and its proportion over total dwell time of the top-3 areas of each level are

included in the basic features. The coherency of each level (f7) determines the consistency of the cus-

tomer’s behavior. The definition of the coherency metric is the proportion of time spent in the longest
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Top 5% longest staying 
customers revisit 30% more.

the certain area revisit less.

Customers who focus on

People who stroll around 
the store revisit very often.

Customers who use the
back door revisit more.

Figure 3.1: The relationship between the selected features and RVbin in store E SC (E[RVbin(v) (v ∈
Vall)] = 0.3616). Each marker point represents the average revisit intention E[RVbin(v)] (v ∈ Vb) of the

set Vb of visits obtained by equal-frequency-binning the entire data according to feature values. Indoor

moving pattern features f1, f7, and f9 shows at most 40 % deviation of E[RVbin(v)] according to the

feature value. The store accessibility feature f17 shows 325 % deviation, which is the highest among the

selected features. For f9, the group of customers who are most likely to use the back door are located

on the left side of the x-axis.

staying area. This metric is effective to capture regular customers who know the store’s layout and go

directly to the desired area.

Entrance and Exit pattern [EE]

Interestingly, customers leaving through the back door (f9) revisited 13.6 % more than customers

leaving through the front door, according to our data. Therefore, we positioned several sensors nearby the

front and back doors to note their entrance and exit patterns, and use the estimated values as features.

We expected that customers familiar with the store might have used a more convenient door for their

next destination. Next, we add the number of previous reentries on that day (f10) as a promising feature.

For this feature, we used 10 min threshold to define independent visit, from the multimodal distribution

explained in Figure 2.6. As the number of daily entrances increases by one, the rate of further revisits

increases by 1 %.
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Heuristics [HR]

To fully exploit the relation between customer trajectories and revisits, we interviewed the managers

and part-timers of the stores to get intuitions on what kinds of patterns are likely to appear from the

customers who are willing to revisit. In general, the interviewees agreed that staying in certain areas,

trying an item, and purchasing or postponing the item can reflect customers’ interest and purchase

pattern that lead to revisits. These steps of actions, in fact, correspond to online shopping activities—

i.e., browse, add to cart, checkout, and then revisit or churn [72]. As we do not know whether a customer

actually tried an item in the fitting room or purchased it, we inferred those actions by tracking the dwell

time in the fitting room and the checkout counter. Here are two representative heuristics anticipating

the revisit of customers for future purchase.

• If a customer wears clothes in the fitting room without purchase (≤ 1 min in the checkout counter):

f11 = 1, for all other cases: f11 = 0.

• If a customer stays in the store much longer (= 10 min) than average visitors [37], without purchase:

f = 1, if not: f = 0.

The reasons for these associations are as follows. If the customer tries an item or stays in the store for a

long time, he/she is prone to purchase the item. However, the fact that the customer does not purchase

the item right away implies that there is a possibility of purchasing that item at the next visit.

Statistics of Each Area [ST]

If a certain semantic area is highly relevant to revisit, the statistics from that area have higher

predictability. For all semantic areas, we created six features including the number of times it was

sensed (f12), the percentage of the total time spent in the area (that is used for developing the coherency

feature), and the standard deviation of the times sensed in the area (f13). As explained before, the

difference in the total number of features is mainly due to the difference in the number of areas that

each store has. In our final model, the main difference in the total number of features originates from

the difference in the number of zones. (Table 3.2)

Time of Visit [TV]

The temporal features include the time of visit such as the hour of the day and day of the week (f14)

as basic features. The feature values described above are ordinal and thus were transformed into multiple

binaries by one-hot encoding. The value of a temporal feature is determined by the entrance time.

Upcoming Events [UE]

Customers are more likely to visit a store in the period of a clearance sale. However, they are less

likely to visit the fashion district in the holiday seasons(e.g., Spring Festivals, Thanksgiving week) since

they are out of the city center. For example, customers who visited one month before the clearance

sale have higher chance to revisit since they would like to get a discount during the upcoming sales. By

combining simple extrinsic information, the temporal features, particularly [UE], becomes the second

strongest predictive feature groups. It contains six features, including a number of days left for the next

clearance sale (f15) and a number of holidays for next 30 days (f16), as numeric features.
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Seasonal 
revisit

Effect of clearance sale
↓

65%
↓

(a) First-time visitors (v1): Prone to events.

21%

(b) All visitors: Indifferent to events.

Figure 3.2: Key factors of v1’s revisit: discount and seasonality.

Discount-sensitive: A set Vb of customers who visited between 30–45 days before a clearance sale showed

a high E[RVbin(v)] (v ∈ Vb) compared to other customers; this difference was more apparent in first-time

visitors than all visitors.

Seasonal-sensitive: Another peak of E[RVbin(v)] appeared on the set of customers who made a visit

between 90–105 days before the sale. It described the seasonal revisit, and it was also more noticeable

to first-time visitors than all visitors.

Store Accessibility [SA]

When installing sensors inside the store, could you imagine that the weak noise collected outside

the store would provide the most important clue to predict revisit? Surprisingly, the revisit predictabil-

ity increased dramatically when we included [SA] features using weak signals, which could have been

overlooked as mere noises. The following settings are expected to be applicable to many studies when

conducting research using in-store signals that do not contain customer address information.

The features are designed to capture various aspects from interarrival times. We utilized two ad-

ditional outdoor areas nearby the store—5 m and 30 m zone—to detect the customer occurrences. Con-

sidering a customer’s arrival process to 5 m zone, let us denote the time of the first occurrence by T1.

For k > 1, let Tk denote the elapsed time between k − 1th and the kth event. We call the sequence

{Tk, k = 1, 2, ..., } as the sequence of interarrival times. Considering the target visit as nth event of the

arrival process, we use the following features:

• n− 1: Number of occurrences before the visit;

• Tn: Number of days from the last occurrence (f17);

• 1n>1: Existence of having any occurrence before the visit;

• µ =
∑n
k=2 Tk/(n− 1): Average interarrival time (f18);

• σ =
√∑n

k=2(Tk − µ)2/(n− 1): Standard deviation of interarrival times;

In addition to these five features from Tk, we added the average sensed time for previous occurrences.

Group Movement [GM]

Unlike previous features, [GM] features were extracted by considering multiple trajectories. This is

a representative feature that can only be captured by analyzing surrounding trajectories that happened
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simultaneously with the main trajectory. In our feature extraction framework, we considered the presence

of companions (f19) and the number of companions (f20). One of the biggest characteristics of judging

whether or not to be a companion is to enter the store at the same time. Based on the information

obtained through the field study, we considered that two visitors are in a group when their entrance time

and exit time are both within 30 s.

We decided 30 s group movement threshold by the following logic. According to our observation

at store E GN in the afternoon of June 24 and June 26, 2017, 56 % of 105 customers entered the store

with their companions, which was more than half. Considering px = 39.2 % as the on-site Wi-Fi turn

on rate (Always-on: 29.2 %, Conditionally-on: 10 %) [84] and py = 56 % as the actual proportion of

customers in a group, we expected that pyo = 15.5 % of the total visitors were represented as having

companions in our collected data of store E GN (by Eq. 3.3 later in Section 3.3.3). By setting 30 s as

a threshold of accompaniment, we also obtained 15 % of the total visitors were considered as having

companions in the same data. By considering a gap between actual group ratio and observed group

ratio, we claim that 30 s is an appropriate threshold to distinguish group movement.

3.2.3 Unused Features

Some potentially useful features were not included in our final model because their effect on the

accuracy was marginal. However, we would like to mention them since they could be useful in other

types of predictive analytics [61, 72].

Sequential Patterns

Semantic trajectories of customers can be represented as sequential patterns. But sequential pat-

terns [27, 61] were not effective for the revisit prediction task on our datasets, so we omitted them from

the final framework. To briefly describe our approach, we retrieved top-k discriminative sequential pat-

terns by the information gain and generated k features. Each feature fi(v) denotes the number of times

a trajectory of visit v contains ith patterns. Starting from the simplest association rule mining, we elabo-

rated a partial sequence mining technique from [61], by incorporating discretized interval between areas.

We discretized a dwell time and an interval into four levels: veryshort, short, medium, and long. With

this approach, our pattern can hold temporal information, which is expected to be more effective than

[27] considering continuous intervals. Table 3.3 shows an example of each level of sequential patterns.

We attempted to use diverse level of sequential patterns but the result was not satisfactory. Despite that

it was expensive to generate the features, their information gains were typically low.

We developed a software4 by modifying an open-sourced frequent sequence mining package5. The

output of the reference software were a set of partial sequence pattern without time constraints, A
∗−−→

B
∗−−→ C. We added three functionality to advance the software. First, we modified the algorithm to

consider time constraints for intervals. Second, we added fast counting module for feature engineering,

to calculate feature values for both training & test sets. Third, we made our software to calculate

information gain as well as support, to find top-k discriminative partial sequences at once. Although we

exclude sequential pattern features from our final model, we believe it is worthwhile to report our effort

in the thesis.

4https://github.com/Seondong/mtraj
5https://github.com/bartdag/pymining
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Table 3.3: Types of sequential patterns.

Pattern type Description

ABC
A pattern without an order, obtained by asso-

ciation rule mining.

A→ B → C

A sequential pattern having an order, where

the following element appears immediately af-

ter the previous element.

A
∗−−→ B

∗−−→ C

A partial sequential pattern [61], an arrow

A
∗−−→ B denotes that there might exist ad-

ditional elements between A and B.

Ashort
∗−−→ Blong

∗−−→ Cmedium
A partial sequential pattern which has a time

constraint for the dwell time of each element.

Enter
veryshort−−−−→ Ashort

short−−→ Blong
medium−−−→ Cmedium

A partial sequential pattern with time con-

straint for the dwell time of the element and

the interval between elements.

Past Indoor Information

We excluded the features that average up the customer’s previous indoor mobility statistics, as well

as those that represent the amount of changes from past statistics [72]. By nature, the number of features

becomes doubled per revisit by considering that information. However, they were not a strong indicator

of revisits unlike [SA] and thus were removed.

Features That May Interfere with Fair Evaluation

Since most customers have a small number of visits, we developed a general model that considers the

mobility of the entire set of customers. According to this principle, we considered each visit separately, by

removing customer identifiers. In this way, we can also ensure that our model is robust to general cross-

validation settings. We excluded the visit date to avoid a biased evaluation that favors the customers

who visited in an earlier period. We also ignored the explicit visit count information.

3.3 Experiments

In our experiments, we verify that our feature set designed from customer mobility patterns is

effective in predicting customer revisit, especially for newcomers. In addition, we verify the performance

of individual feature groups and semantic levels. Throughout the discussion section, we provide more

detailed analyses regarding the revisit prediction. The key contents include the demonstration of the

performance change over the length of data collection period and model robustness on missing customers.

We conclude this section by sharing the difficulties of securing accuracy in line with the gap between the

predictive power and the statistical significance of each feature.
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3.3.1 Settings

Prediction Tasks

We designed prediction tasks to explore customers’ revisit behaviors. The first task is a binary

classification task to predict customers’ revisit intention RVbin. The second task is a regression task

to predict the revisit interval RVdays between two consecutive visits. For each task, we conducted

experiments on two different data subsets. First, we see the performance of our model on the entire

customer dataset. Second, we used a dataset consisting of only the first-time visitors to show that our

prediction framework is effective in determining the willingness of first-time visitors to revisit.

Scoring Metrics

We used two scoring metrics: accuracy and root mean squared error (RMSE) for the classification

and regression tasks, respectively.

• The accuracy is the ratio of the number of correct predictions to that of all predictions. We used it for

the classification task because it is considered to be the most intuitive metric for store managers and

practitioners. To fairly compare the model performance in seven imbalanced datasets with different

revisit rates, we downsampled non-revisited customers for each dataset. In this way, we designed the

task as a binary classification on balanced classes having 50 % as a random baseline. To mitigate the

risk of the sampling bias, we prepared ten different downsampled train/test sets with random seeds.

The averages of ten executions were reported in the paper.

• The RMSE is measured between the actual interval and the predicted interval. To make the RMSE

values of two stores with different data collection periods comparable, a RMSE value was normalized

by the length T of the data collection period, providing the same result as the RMSE calculated by

considering the ratio of an interval to the total period y∗i = yi/T , as follows:

RMSE

T
=

1

T

√√√√ 1

N

N∑
i=1

(yi − ȳi)2 =

√√√√ 1

N

N∑
i=1

(
yi
T
− ȳi
T

)2

=

√√√√ 1

N

N∑
i=1

(y∗i − ȳ∗i )2 = RMSE∗.

(3.1)

Because we cannot calculate the revisit interval for the last visit, we excluded the customers’ last

visits for the regression task.

Data Preparation

The training and testing data were prepared with three settings:

• S1: 5-fold cross-validation by dividing customers, where each customer data can be included only in

a single fold.

• S2: 5-fold cross-validation by dividing visits6, where each visit is handled independently.

• S3: First 50 % visits as the training data, and other 50 % as the testing data.

The accuracy difference between S1 and S2 was insignificant to the fourth decimal place. In S3, there

was an accuracy loss of about 2.5 % on average compared to S1 and S2, due to floor plan changes of the

stores and inaccurate labels caused by truncation in time (Section 3.3.3). Because of the page limit, we

report the main results using the configuration S1.

6As a result of Section 3.2.3, our model is considered to be safe to perform cross-validation.
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For all settings, we did not consider the data which occurred in the final two weeks of the data

collection period, because their revisit behavior might not be captured owing to the termination of the

data collection. In the later chapter, we introduce survival analysis and how to learn correctly from these

partial observations. The experiment is performed on the entire trajectory collected, and we have not

made any efforts to cherry-pick parameters to find well-performing data.

Classifier

All results described in this section were obtained using Python API of the XGBoost [14] library

that optimized the gradient boosting tree [25] framework. In our preliminary experiments, XGBoost gave

the best performance among logistic regression, decision trees, random forests, AdaBoost, and gradient

boosting trees implemented in the Python Scikit-learn [86] library.

We used all features for training and testing the model, since using all features gives the best

performance and the boosting tree classifier is robust to potential correlations between features. The

elapsed time for each fold with 200,000 visits and 660 features took no longer than 1 min in a single

machine (Intel i7-6700 with 16 GB RAM, without GPU). Besides, we did not focus on fine-tuning the

prediction model, but used the basic hyperparameter settings. Obviously, our prediction framework can

benefit from any state-of-the-art classifier.

Table 3.4: Performance of classification and regression tasks.

Store Period

(days)

# fea-

tures

Custom-

er type

# data (# revisitors) Accuracy RMSE

A GN 222 256
First 99,497 (9,514) 0.6336 0.2132

All 112,672 (13,222) 0.6689 0.2000

A MD 220 328
First 223,103 (47,917) 0.6930 0.1865

All 327,940 (104,913) 0.7412 0.1622

E GN 300 866
First 144,610 (21,701) 0.6663 0.1862

All 183,246 (38,817) 0.7050 0.1627

E SC 373 663
First 172,551 (41,036) 0.6818 0.1824

All 270,366 (98,818) 0.7288 0.1475

L GA 990 244
First 838,241 (107,925) 0.7173 0.1403

All 1,062,226 (225,409) 0.7789 0.1244

L MD 747 220
First 1,154,486 (197,476) 0.6799 0.1416

All 1,718,359 (566,701) 0.7991 0.1146

O MD 698 316
First 1,033,253 (294,949) 0.6645 0.1311

All 2,008,384 (978,699) 0.7599 0.1028

3.3.2 Results

Overall Results on Seven Stores

Table 3.4 shows the overall accuracy and RMSE using XGBoost classifier. First, the prediction

accuracy for first-time visitors is 67 % averaged over seven stores. By only using mobility data captured

by in-store sensors, two out of three customer’s revisit is predictable without having any historical data

in the store. Second, the average prediction accuracy increases to 74 % by considering all customers. The

primary reason for this result is that the dataset of all customers contains frequently visiting customers,
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(b) On first-time visitors.

Figure 3.3: Effectiveness of analyzing customer trajectories.

who are mostly predicted to revisit. Third, the stores with a long data collection period and abundant user

logs generally show high performance, while this trend might not happen depending on the characteristics

of the stores. Last, the regression performance shows a similar tendency with classification performance.

For instance, RMSE error of store L GA, L MD and O MD are much lower than the first four stores.

As shown in Eq. (3.1), the RMSE here can be explained as a mean error rate with respect to the data

collection period, the meaning of the error 0.1028 is that the difference between predicted and true

interval divided by the data length is 10.28 % in average.

Performance Improvement by Analyzing Trajectories

To measure the performance improvement using our features, we developed two different baselines

for comparison. The first baseline is a theoretical lower bound of the prediction accuracy obtained by

only using revisit statistics conditioned on the number of (prior)7 visits. Since we fully ignored any other

information here, the prediction accuracy with this limited information must be lower than that of using

full trajectories. To continue the flow, the procedure of deriving lower bounds will be introduced at the

end of this section.

The second baseline is a model to which the visit date is added. Since our task utilizes finite time-

series datasets with time-dependent objectives, the earlier collected logs tend to have the higher revisit

rate. Therefore, by including a visit date as an additional feature, the baseline accuracy improves natu-

rally. If there existed infinite data, the performance increase by this factor would disappear. The benefit

of using customer mobility can be considered as the gap between our final model and the second baseline.

Figure 3.3 reports the accuracy of our model8 against two baselines. We note that our final model is

more effective than the second baseline by 4.7–11.6 % in terms of accuracy. Among the first-time visitors,

the effectiveness of trajectory analysis increases, showing a performance improvement of 8.0–24.3 %.

7We said ‘prior’ to make reader understand the concept easily. Actually, we used the number of visits including the current

one.
8For this experiment, we included visit count and date to our feature set, so the overall accuracy is slightly higher than

the values reported from Table 3.4.
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Table 3.5: Prediction accuracy conditionally measured on groups of customers with the same number of

visits. We only reported the result where |vn|≥ 50 on the test set.

Store ID A GN A MD E GN E SC L GA L MD O MD

# visits

v1 0.661 0.741 0.681 0.716 0.763 0.778 0.758

v2 0.732 0.735 0.716 0.691 0.795 0.773 0.706

v3 0.824 0.786 0.791 0.751 0.840 0.848 0.757

v4 0.856 0.808 0.845 0.800 0.848 0.879 0.801

v5 - 0.803 0.865 0.831 0.847 0.885 0.820

v6 - 0.810 0.884 0.852 0.846 0.883 0.829

v7 - 0.808 0.907 0.861 0.856 0.879 0.834

v8 - 0.814 0.911 0.866 0.836 0.878 0.838

v9 - 0.802 0.903 0.875 0.863 0.874 0.837

v10 - 0.789 - 0.900 0.867 0.870 0.839

Prediction Accuracy According to the Number of Visits

For further analysis, we measured the prediction accuracy for each customer group determined by

their number of visits. For this experiment, we used the model trained on all customers.

Customers who visit more than a certain number of times usually have a high chance to revisit.

Thus, we expect that our model can predict their revisits with high accuracy. The results in Table 3.5

confirm this expectation. As customers visited more often, the prediction accuracy tended to increase in

all stores. Interestingly, we found that the prediction accuracy sometimes was the lowest in the case of

v2 since those groups of customers seemed to have the most uncertain behavior on their revisits.

Table 3.6 shows the improvement of our model compared with the two baselines in Section 3.3.2

for each customer group. It indicates that our model is more effective than the baselines by over 10 %,

especially on v1 and v2. Thus, our feature set is shown to be effective in predicting customers’ revisits

even when they are newcomers.

Deriving the First Baseline Analytically The lower bounds can be derived either experimentally

or analytically. Here is how we derived it analytically. The visit logs vk with the same visit count k are

considered to have the same information. To maximize the accuracy, we must predict the label l of vk

by the following criteria:

∀v : l(v ∈ vk) =

1, if E[RVbin(vk)] ≥ 1/2

0, otherwise.
(3.2)

Considering each proportion pk = |vk|/
∑
k |vk| and simplifying E[RVbin(vk)] as rk, the lower bound

accuracy of a model can be represented as LB =
∑
k pk · max(rk, 1 − rk). In the experiment of only

first-time visitors, LB = 1/2 since p1 = 1 and r1 = 1/2.

The interpretation with the lower bound is as follows. For higher predictability, the revisit tendency

of each vk should be homogeneous. In Figure 3.4, we can notice that store L MD is more predictable

than A GN, because |rk − 0.5| of L MD is larger than that of A GN for the majority of k.
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Table 3.6: Improvement of our model against the two baselines. The first number represents the im-

provement of prediction accuracy over the first baseline (%), and the second number represents the

improvement over the second baseline (%).

Store ID A GN A MD E GN E SC L GA L MD O MD

# visits

v1 18.6/7.7 17.1/14.7 12.9/9.1 10.4/7.1 18.2/17.6 10.5/10.4 7.6/7.4

v2 4.9/1.2 13.5/5.0 7.5/2.0 15.1/3.1 4.6/3.0 18.4/12.5 29.7/13.0

v3 1.7/0.4 4.2/1.3 3.0/0.4 7.5/1.3 0.9/0.3 2.5/1.2 8.0/3.5

v4 1.3/0.3 3.5/0.5 2.8/1.1 5.5/0.7 1.0/0.1 0.9/0.2 3.7/1.0

v5 - 3.2/0.3 1.3/-0.4 3.8/0.8 1.1/0.1 0.7/0.0 2.7/0.5

v6 - 2.3/0.2 1.6/0.8 3.3/0.4 1.3/0.2 0.8/0.0 2.4/0.2

v7 - 3.8/0.8 1.8/-0.1 2.7/1.0 1.3/0.3 0.8/0.0 2.2/0.2

v8 - 4.0/-0.2 1.7/0.5 2.4/0.0 1.4/0.2 1.2/0.0 2.2/0.2

v9 - 3.6/0.0 1.5/0.9 3.2/0.6 1.8/0.6 1.4/0.2 2.0/0.0

v10 - 3.1/0.0 - 2.1/0.2 0.9/0.2 1.6/-0.1 2.5/0.2

Less predictable

(a) The case of a less predictable store with LB

0.595.

More predictable

(b) The case of a more predictable store with LB

0.741.

Figure 3.4: Lower bound accuracies of two stores.
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Predictive Power of Feature Groups

Figure 3.5(a) investigates the predictive power of each group of features in store E SC. Each bar

corresponds to the prediction results using the features of only a specific group. The labels of the x-axis

are the abbreviations of the feature groups categorized in Table 3.1. For the convenience of comparison,

the leftmost bar on the figure represents the results when all features in Table 3.4 are used. It was

observed that the store accessibility [SA] features have the strongest predictive power, especially for the

prediction with all visitors, followed by the upcoming event [UE] features for the first-time visitors.

Predictive Power of Semantic Levels

As opposed to our intuition, a performance of semantic levels inside the store did not boost the

performance that much. As in Figure 3.5(b), the performance of the features generated from the category

level (T2) only beats the features from the sensor level (T1). Besides, the semantic trajectories generated

from the floor-level (T3) and the gender level (T4) were not effective to predict customer revisit in the store

E SC. We can conclude that finding effective trajectory abstraction is difficult even if the hierarchical

information is provided.

ALL OS TS AP EE HR ST TV UE SA GM

 

0.50
0.55
0.60
0.65
0.70
0.75

Ac
cu

ra
cy

First-time visitors
All visitors

(a) On feature groups.

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

First­time visitors
All visitors

ALL
Sensor

Cate
gory Flo

or
Gender

In/Out

 (b) On semantic levels.

Figure 3.5: Performance comparison on feature groups and semantic levels for store E SC. Each bar rep-

resents the predictive power that can be obtained when using only the feature group or the semantic level

shown on the x-axis. In (a), store accessibility [SA] and upcoming events [UE] show strong predictive

power. In (b), [In/Out] level shows the strongest predictive power followed by [sensor] and [category]

level. (Acronym in (a): [ALL] = All features, [SA] = Store accessibility, [UE] = Upcoming events, [ST]

= Statistics of each area, [OS] = Overall statistics, [AP] = Area preference, [SP] = Speed/Acceleration,

[EE] = Entrance and exit pattern, [HR] = Heuristics, [TV] = Time of visit, [GM] = Group movement.)

Comparison On Various Classifiers

During the revision, we also compared the performance of the XGBoost results with up-to-date

boosting classifiers such as LightGBM [49] and CatBoost [89], and LightGBM was 5.7 times faster than

CatBoost with similar performance. To further improve performance, we also tried a two-level stacking

by incorporating the top-3 individual models, but the performance improvement was marginal. We first

introduce the performances between eight classifiers. We used default parameter settings for classifiers

and some tuned parameters are listed below.
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Figure 3.6: Comparison between classifiers. LGB turns out to be the most effective among all classifiers.

(a) Average accuracy on all experiments, (b) Average running time on all experiments.

• Classifiers provided by Scikit-learn [86]9. The parameters used are summarized as follows.

– LR (Logistic Regression): default settings.

– DT (Decision Tree): max depth = 4.

– RF (Random Forests): n estimator = 10.

– AB (AdaBoost): default settings.

– GB (Gradient Boosting): max depth = 4.

• Up-to-date boosting classifiers:

– CAB (CatBoost): depth = 4, learning rate = 0.1, iterations = 30.

– XGB (XGBoost): max depth = 4, learning rate = 0.1.

– LGB (LightGBM): max depth = 4, learning rate = 0.1.

Figure 3.6 summarizes the comparison results for the eight classifiers in terms of prediction accuracy

and running time. To obtain stable results, we repeated 5-fold cross-validation 25 times and then reported

the averages by aggregating the results of the seven stores. As a result, LGB turned out to be the fastest

classifier among the three best-performing classifiers—GB, XGB, and LGB. CAB was very fast as well

as gave comparable results. Interestingly, DT took more time than RF and showed a better result in the

default setting. Table 3.7 shows the details of Figure 3.6 by showing the accuracy for each of the seven

stores. The mean and standard deviation were calculated from the average accuracies of 25 different

5-fold cross-validations.

Comparison On Stacking Models

To achieve additional performance improvement, we applied stacking (meta ensembling) with eight

strategies. Stacking is a model ensembling technique used to combine multiple predictive models to

generate a better model [113]. Usually, the stacked model is known to outperform each of the individual

models owing to its smoothing nature and its ability to highlight each base model. The main point of

the stacking is to utilize the prediction results of the base models as features for the stacking model in

the second layer.

9Scikit-learn 0.20, which is the latest version at the time of this submission, was used for the experiments.
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Table 3.7: Prediction accuracy (%) of various classifiers for the revisit prediction task.

(a) Experimental results on the models trained by first-time visitors.

Store ID A GN A MD E GN E SC L GA L MD O MD

LR 59.56±0.27 66.39±0.13 61.80±0.22 60.94±0.21 69.08±0.08 65.11±0.09 63.48±0.07

DT 62.42±0.26 66.42±0.11 64.97±0.25 66.31±0.09 69.98±0.06 65.33±0.05 63.94±0.04

RF 61.63±0.25 66.74±0.13 61.84±0.32 62.50±0.20 69.34±0.16 65.57±0.11 63.58±0.13

AB 62.51±0.31 68.52±0.12 65.39±0.16 66.83±0.14 71.05±0.06 67.26±0.05 65.68±0.03

GB 63.13±0.20 69.30±0.10 66.69±0.19 68.29±0.10 71.83±0.06 67.77±0.05 66.21±0.04

CAB 63.12±0.27 68.43±0.11 65.78±0.18 67.44±0.10 70.84±0.07 66.94±0.05 65.32±0.05

XGB 63.14±0.23 69.29±0.10 66.67±0.15 68.28±0.10 71.79±0.06 67.76±0.04 66.19±0.03

LGB 63.18±0.25 69.31±0.11 66.68±0.18 68.28±0.11 71.80±0.06 67.77±0.05 66.19±0.03

(b) Experimental results on the models trained by all visitors.

Store ID A GN A MD E GN E SC L GA L MD O MD

LR 61.58±0.34 69.30±0.16 62.43±0.48 60.15±1.43 72.64±0.05 75.41±0.12 69.69±0.20

DT 66.10±0.27 72.18±0.05 68.30±0.11 70.85±0.05 76.38±0.04 78.29±0.04 73.98±0.01

RF 65.13±0.26 71.38±0.10 66.91±0.24 68.84±0.20 75.68±0.11 77.74±0.20 73.47±0.18

AB 66.25±0.25 73.19±0.07 69.78±0.10 72.02±0.04 76.85±0.05 79.12±0.02 75.07±0.01

GB 66.67±0.21 74.11±0.05 70.69±0.09 73.06±0.05 77.87±0.03 79.75±0.07 75.82±0.01

CAB 66.62±0.23 73.53±0.05 69.96±0.10 72.15±0.06 77.14±0.04 79.11±0.09 75.16±0.01

XGB 66.69±0.21 74.09±0.06 70.67±0.07 73.05±0.05 77.85±0.03 79.74±0.08 75.81±0.01

LGB 66.70±0.20 74.10±0.05 70.69±0.09 73.05±0.06 77.86±0.04 79.74±0.08 75.81±0.01
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Downsampling
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Figure 3.7: Stacking options.
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Table 3.8: Prediction accuracy (%) of stacking models for the revisit prediction task with the data of all

visitors.

Store ID A GN A MD E GN E SC L GA L MD O MD

Single Model

LR 61.57±0.17 69.33±0.07 62.61±0.43 60.92±0.96 72.65±0.04 75.34±0.14 69.64±0.18

DT 66.17±0.26 72.21±0.03 68.33±0.17 70.86±0.06 76.37±0.03 78.27±0.01 73.98±0.01

RF 65.17±0.16 71.36±0.13 66.84±0.26 68.63±0.24 75.68±0.12 77.68±0.17 73.37±0.39

AB 66.40±0.29 73.18±0.05 69.82±0.07 72.00±0.05 76.82±0.03 79.12±0.01 75.06±0.01

CAB 66.84±0.11 73.80±0.02 70.44±0.15 72.61±0.06 77.39±0.03 79.38±0.01 75.51±0.01

XGB 66.78±0.15 74.10±0.04 70.67±0.12 73.03±0.07 77.83±0.04 79.71±0.01 75.81±0.01

LGB 66.88±0.23 74.11±0.03 70.64±0.13 73.04±0.07 77.83±0.02 79.71±0.01 75.82±0.02

Stacking Model

M1 66.56±0.12 73.88±0.03 70.49±0.07 72.91±0.09 77.56±0.02 79.52±0.01 75.66±0.01

M2 66.70±0.13 73.95±0.03 70.52±0.08 72.95±0.08 77.62±0.02 79.59±0.01 75.69±0.01

M3 66.57±0.15 74.01±0.02 70.55±0.11 72.97±0.08 77.79±0.02 79.66±0.01 75.77±0.01

M4 66.78±0.22 74.07±0.02 70.65±0.11 73.07±0.06 77.82±0.02 79.69±0.01 75.80±0.01

M5 67.04±0.19 73.91±0.05 70.62±0.13 72.95±0.10 77.58±0.02 79.52±0.01 75.65±0.01

M6 67.00±0.28 73.96±0.04 70.64±0.14 72.99±0.09 77.64±0.02 79.58±0.01 75.69±0.01

M7 66.88±0.19 74.06±0.04 70.67±0.11 73.01±0.08 77.80±0.02 79.66±0.01 75.77±0.01

M8 66.97±0.15 74.10±0.04 70.71±0.11 73.10±0.07 77.83±0.02 79.70±0.01 75.80±0.01

To do this, we selected CAB, XGB, and LGB as the base models. We further separated a training

set into three subsets and used two subsets to make the prediction labels for the remaining subset. The

prediction labels for the testing set were also calculated together three (=3C2) times, and the three sets

of the labels for the testing set were averaged for the final use. In this way, we generated the label features

for both training and testing sets. These additional features are fed to the final LGB stacking model.

We followed a general procedure from the reference10 and added three options. Figure 3.7 illustrates

the process of creating eight stacking models (M1–M8) through the choice of the three options. The

description of the three options is as follows.

• Sampling strategy: A parameter that determines whether to use either random oversampling [63] or

downsampling. This option is not directly related to the stacking, but we added it to improve the

accuracy by treating the class imbalance problem.

• # of predictions: A parameter that determines whether to use one model or multiple models for

each fold. The former case generates a single additional feature, and the latter case generates three

additional features.

• Using only labels: A parameter that determines whether to use only the prediction labels (one or

three features) or to use all existing features with the prediction labels (n+1 or n+3 features where n

is the total number of hand-engineered features used).

10http://bit.ly/Kaggle_Guide_Stacking
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Table 3.9: Elapsed time (min) of stacking models on revisit prediction task.

Store ID A GN A MD E GN E SC L GA L MD O MD

Single Model

LR 0.14±0.03 2.28±0.44 1.91±0.48 2.54±0.92 2.86±2.53 10.77±1.14 18.92±6.76

DT 0.02±0.00 0.19±0.00 0.16±0.00 0.34±0.02 0.32±0.02 0.82±0.01 2.50±0.20

RF 0.01±0.00 0.09±0.00 0.06±0.00 0.13±0.01 0.19±0.05 0.53±0.00 1.51±0.18

AB 0.17±0.00 1.97±0.07 1.61±0.05 3.41±0.14 3.64±0.22 12.61±0.10 41.94±5.57

CAB 0.10±0.01 0.26±0.01 0.32±0.01 0.48±0.01 0.36±0.02 0.65±0.01 1.86±0.07

XGB 0.36±0.01 4.01±0.16 3.78±0.17 7.33±0.18 6.70±0.34 16.01±0.53 47.25±4.63

LGB 0.06±0.00 0.62±0.03 0.56±0.02 1.07±0.04 0.80±0.06 1.55±0.01 5.04±0.28

Stacking Model

M1 0.73±0.02 7.77±0.44 7.01±0.25 13.81±0.48 12.15±0.57 29.16±0.51 83.45±10.04

M2 0.72±0.02 7.72±0.43 6.94±0.25 13.71±0.48 12.06±0.57 28.82±0.49 82.94±10.00

M3 1.11±0.02 12.16±0.69 10.93±0.39 21.47±0.74 19.25±0.98 46.00±0.57 134.76±14.39

M4 1.09±0.02 12.05±0.68 10.84±0.39 21.30±0.72 19.04±0.97 45.40±0.57 133.58±14.33

M5 5.04±0.24 16.31±0.87 25.60±1.65 23.62±0.65 49.06±2.61 72.13±2.99 87.32±8.27

M6 5.02±0.24 16.26±0.86 25.56±1.65 23.58±0.65 48.90±2.62 71.90±2.99 87.05±8.26

M7 7.82±0.25 25.57±1.21 39.86±1.91 36.90±1.19 78.76±4.07 117.41±5.02 139.91±14.17

M8 7.74±0.25 25.40±1.20 39.74±1.92 36.76±1.18 78.11±4.06 116.52±5.00 138.92±14.09

Table 3.8 and Table 3.9 shows the average accuracy results and the average running time obtained

for each of the seven stores in details11. We observed that the performance improvement was not so high

despite the long running time of the stacking model. Thus, we conjecture that each of the best-performing

classifiers achieved almost the highest accuracy by itself.

3.3.3 Discussions

Growing Data—Is It Enough?

Proposing an appropriate data collection period is a very important business decision. From a

customer’s point of view, you will want to use the customer monitoring service for as short as possible

to reduce cost, if there are not any benefit of using the service over certain time horizon. On the other

hand, in terms of providing services, you want to make a long-term contract to make a steady profit.

We would like to suggest some pointers to solve the following questions.

• In terms of predicting customer revisit, how long should we collect the data?

• Is the collection period required for each store different?

Figure 3.8(a) shows that the overall prediction accuracy increases as the length of the data collection

period increases. The performance rapidly increases over the first few months, and then the increment

is getting smaller. The main reason for the poor performance in the first few months is the lack of

information on revisiting customers. Suppose that we have the data only for the first three months and

consider a customer who did not revisit within the three months. His/her revisit intention is labeled as

being false. However, what if he/she revisits after four months? Therefore, the labels in the training data

11We ran another five sets of 5-fold cross-validation for this experiment. Thus, the values of the baselines in Table 3.8 are

slightly different from those in Table 3.7 within the margin of error.
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(d) On first-time visitors, average revisit rates de-

crease in some cases.

Figure 3.8: Impact of the data collection period.

could be inaccurate if we collected the information for an insufficient period. To confirm our conjecture,

we also examined the proportion of customers’ revisit intention as the data collection progressed, as in

Figure 3.8(c). The proportion, E[RVbin(v)], indeed increased as the data collection period increased.

Thus, we confirmed that more customers were turned to repeating visitors with more data. However,

prediction accuracy on first-time visitors did not always increase. We notice that the average revisit rate

also decreases for those cases, i.e., O MD and L MD, which implies that recently visited customers do not

tend to revisit the store. Overall, with a longer data collection period, performance improvement occurs

by having more positive cases for regular customers. But, we should not make hasty generalizations

since we only look at the data from seven stores. Therefore, the period for data collection, especially

for predictive analytics, should be carefully determined. In the next chapter, we will share some of our

thoughts on determining the data collection period by comparing the power-law distribution coefficient

as time progresses.
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Deciding Data Collection Period by Power-law Coefficient

Since E[RVbin(v)] and E[RVdays(v)] vary from store to store, it may be difficult to determine whether

the collected data is sufficient or not. We suggest that the appropriate data collection period can be set

using the variation of the power-law coefficient. Similar to the previous study on the number of visits to an

internet website [2], the number of visits to a store k is close to a straight line in the log-log plot, and can

be approximated by a power-law distribution: p(k) ∼ Cx−α. By definition of the power-law distribution,

a store with a smaller power-law coefficient α has a higher average revisit rate E[RVbin(v)]. The power-

law coefficient for each store vary widely12. However, as the data collection period gets longer, the visit

frequency distribution converges, and thus the coefficients decrease and converge. Table 3.10 shows how

the power-law coefficient ratio αt/αt+30days of seven stores converges to 1 over time. Here, we can state

that the visit frequency distribution of the 180-day O MD data is more close to stationary distribution

than that of the 240-day L GA data. By looking at the plots in Figure 3.8, we can confirm that the

predictive power and average revisit rates of store O MD saturates earlier than those of store L GA.

Although we could not succeed in explaining the relationship theoretically, we experimentally confirmed

that as the number of power law coefficients rapidly approaches 1, the distribution and predictive power

rapidly saturate. So we encourage practitioners to decide an appropriate data collection length by

monitoring the convergence rate.

Table 3.10: Data sufficiency depending on the data collection period. The closer the value is to 1, the

more stationary the distribution of data is.

Shop ID t = 30 days 90 days 180 days 240 days 360 days 660 days

A GN 1.609 1.119 1.070 - - -

A MD 1.365 1.165 1.051 - - -

E GN 1.479 1.162 1.078 1.036 - -

E SC 1.482 1.113 1.057 1.035 - -

L GA 1.517 1.138 1.115 1.075 1.038 1.013

L MD 1.661 1.213 1.069 1.060 1.027 1.008

O MD 1.303 1.133 1.048 1.026 1.022 1.002

Real Behavior and Collected Data—Are They Same?

Although the Wi-Fi positioning system enabled noninvasive monitoring, it is also limited, consid-

ering that not all users turn on Wi-Fi of their mobile device. Since the 4G LTE connection is very

fast and ubiquitous in Korea [84], the proportion of “always-on” users is just 30 % [128]. This limitation

implies that the datasets were missing some customer behaviors in the real world. Figure 3.9(a) shows

untraceable revisits due to the conditional Wi-Fi usage of the customer, and Figure 3.9(b) shows a gap

between actual/observed proportion of group movements caused by low Wi-Fi usage. The reason for the

difference is that both companions must use Wi-Fi to verify the accompanying records on the data. px

denotes the probability of customers who turn on Wi-Fi on-site including ‘conditionally-on’ users, and

py denotes the actual proportion of customers in a group of size two. Here we ignore groups more than

12The power-law coefficient from each store calculated by [5] is listed in Table 2.1.
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Figure 3.9: Missing behaviors in noninvasively collected data: (a) Customers’ revisits were untraceable

if they did not have Wi-Fi turned on. (b) The actual group movement ratio was 56 % instead of 15.6 %.

Researchers must not interpret the data as it is, when explaining the real behavior.

two customers, which are not that common. Then the proportion pyo of group customers observed in

the data can be represented as Eq. (3.3).

pyo =
Observed(Group)

Observed(Group) +Observed(Individual)

=
py(px)2

py(px)2 + 2pypx(1− px) + (1− py)px
=

pxpy
1 + py − (px)2

.

(3.3)

Therefore, readers should recognize that the observed movement ratio can be very different from the

actual movement ratio. We encourage readers to go back to Section 3.2.2 to check how to utilize this

gap to decide the 30 s threshold to determine group movements. In the future, if customers’ behaviors

are more traceable with additional sensing technologies, we believe that noninvasively collected data will

better reflect actual customer behaviors.

Assumptions to Interpret the Data

Continuing the context, we would like to clarify how we count the first-time visitors and explain

several underlying assumptions to consider.

• Assumption 1: Because we do not know whether customers visited a store before data was collected,

we simply assume that the customers did not visit before the collection period. We believe that this

assumption is reasonable because the stores in which we collected the data were relatively new at that

time we began data collection.

• Assumption 2: Because customers are captured only when they turn on the Wi-Fi of their mobile

device, we assume that the customers’ Wi-Fi turn on behavior is consistent when they visit the store.

Also, we assume that there is no correlation between Wi-Fi usage and customer groups (first-time

visitors and VIP customers).
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(b) On first-time visitors.

Figure 3.10: Model robustness on missing customers.

• Assumption 3: We assume that customers visit the store with a device having the same MAC address.

This assumption holds if there are not many people carries several Wi-Fi devices during their shopping.

Also, we removed devices that follows MAC-address randomization.

Rigorously speaking, the proportion of true first-time visitors would be less than 70 % by considering

all the effects explained above. Nevertheless, these customers are also likely to be early stage visitors.

Performance on Incomplete Data

Assuming that some of the customers’ data are completely gone, is the performance of our model

reliable? We confirmed that over 95 % of the performance of our model is maintained with a very small

fraction of the dataset (e.g., 0.5 % for L MD). For each store, we randomly removed the records of a

set of customers and measured the model performance using the remaining data. Figure 3.10 shows the

averages for 20 different executions. The accuracy loss of the model was within 3 % if 10,000 visits were

secured. This observation can be also interpreted as follows:

• For large-scale mobility data, a comparable prediction model can be built by using small data subsets.

• On the other hand, we can estimate the prediction performance when all customer data becomes

traceable.

• High prediction accuracy of some stores may not be due to their large number of visitors.

• Our revisit prediction framework can be also effective to smaller stores.

Meaningful Insights but Low Predictability

We would like to point out that securing prediction accuracy can be difficult although the differences

between the two groups may seem obvious. The values of handcrafted features significantly differ by the

revisit status, each of which is helpful to explain customers’ visit patterns in retail businesses. But from

the perspective of a prediction task, the correlation coefficient between the feature and the revisit label

was relatively small, and the prediction accuracy using the feature was not very high.
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In Table 3.11, the relative difference diff1 in the feature values depending on the future revisit

status is noticeable (2.7–104.2 %). Besides, the p-value (p < 10−100) from Mann-Whitney U test sup-

ports that samples selected from revisited group {V1 | v ∈ V1, RVbin(v) = 1} and non-revisited group

{V0 | v ∈ V0, RVbin(v) = 0} are not from the same distribution. The relative difference diff2 of the

revisit rate between the top 5 % and the bottom 5 % of customers in terms of feature values also shows

clear distinction by 43.5–134.7 %.

However, the correlation coefficient and the final prediction accuracy using the feature are not as

impressive as diff1 and diff2. Practitioners should note that the behavioral difference between the two

groups is obvious and the p-value is high, but not in terms of the metric of correlation and prediction

accuracy. Also, the feature should not be discarded because of the low correlation coefficient. If the

feature has a nonlinear tendency, its predictive power can be strong. The statistics of fb and fc in

Table 3.11 confirms our argument. We assert that our high-quality prediction came from a combination

of various kinds of features which behave differently.

3.4 Summary

Various retail analytics companies have set up sensors to monitor customer mobility in offline stores.

Although it was difficult to connect with other kinds of data because of legal issues, we confirmed that

customer mobility indeed involves diverse meanings. Without having access to customer purchase data

or customer profile, we have found that revisit intention of customers are predictable by up to 80 %, using

only Wi-Fi signals collected by in-store sensors. Toward this goal, we suggested guidelines for setting

the collection period of indoor data for revisit prediction. We also showed our model is robust even if a

majority of customer data is missing. Moreover, we demonstrated that significant observations may be

in disagreement with the final predictive power. The proposed set of features has enough generality to

be applied in any offline stores tracking customer foot prints. We expect that our findings will help data

scientists and marketers from both retail analytics companies and their clients make important decisions.

Although we did not point it out, several interesting questions are remained. What if we train

our current model on the original datasets with huge class imbalance? How to use partial observations

captured at the end of the data collection period? Is our model still good enough if we divide training

and testing sets by time after preserving class imbalanced? Although we performed quite exhaustive

experimental evaluation and the results were aligned with the initial claims, we cannot affirm that we

answered those questions in this chapter thoroughly. In the next chapter, we introduce our new model

SurvRev to answer those questions.
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Chapter 4. Revisit Prediction By Deep Learning

Chapter based on the recent work after the proposal.

In this chapter, I introduce SurvRev, a next-generation revisit prediction model that can be tested directly

in the business. Through an appropriate combination of survival analysis and deep learning with our

domain knowledge, the new SurvRev model covers the predictive analytics on imbalanced class with

partial observations.

Our SurvRev model has many advantages. First, SurvRev can use partial observations which were

considered as missing data and removed in the previous regression framework. By using deep survival

analysis, we are able to estimate the next customer arrival from unknown distribution. Accordingly,

SurvRev is robust on huge class imbalance occurred by the censoring effect. Second, SurvRev is an event

rate prediction model. It generates the predicted event rate of the next k days rather than predicting

revisit interval RVdays(v) and revisit intention RVbin(v) directly. This design enables SurvRev to work

well on testing sets with unknown probability distributions.

We showed the superiority of the SurvRev model by comparing with diverse baselines including

our feature engineering model and the state-of-the-art deep survival models. we reconfirm that in-store

signals captured by customer mobility can be an important clue for predicting their future behavior.

For fertilizing this field, we also released more realistic benchmark dataset for revisit prediction,

which will be the first publicly available dataset as far as I know. We believe this dataset can be used for

diverse topics—predicting stickiness1 of the customer, next area prediction, or funnel analysis to increase

an inflow rate.

4.1 Motivation

Deep learning is when students create connections between

the course material and their own lives.
— James Lang

In the previous chapter, we introduce our revisit prediction framework powered by feature engineer-

ing. We show the effectiveness of our framework by exhaustive experiments. However, we received some

concerns about our evaluation protocol. We would like to take a look at the opinions one by one and

introduce our effort to set up more principled evaluations to represent the real-world application.

Towards Practical Application Settings

The first concern is the evaluation method using cross-validation. We removed test users entirely

and train with the remainder users and test on the removed users. This policy perfectly makes sense

for prediction tasks in a static dataset unrelated to time. However, in a longitudinal prediction setup,

this policy leads to an implicit data leakage because the testing dataset is not guaranteed to be collected
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Train instances:
Test instances:

Potential to have 
data leakage

(Maybe she recommended this store to him)

(a) Previous cross-validation settings: Potentials to have information leakage between

training and testing set since some testing instances advances over training instances.

Train period Test period𝑡1 𝑡2

Train instances:
Test instances:

Use previous observations

(b) New prediction settings: Data is splitted by time so there is no potential leakage

between training and testing set. Previous observations are used to predict the future.

Figure 4.1: Updated data splitting rules.

later than the training set. We also agreed to split the data according to a particular date and train on

the former part and test on the latter part (Figure 4.1).

The second concern is factitious downsampling. Although our feature set led to significant per-

formance improvement on a downsampled dataset, we cannot guarantee to observe the same amount

of improvement if our framework is evaluated on the original imbalanced dataset. In the case of ex-

treme class imbalance, the predictive power of each feature might disappear due to the dominance of

the majority label. We accepted the comments and decided to use the original dataset without any

adjustment.

There are several advantages by using the original dataset as well as applying time-based data split-

ting. First, we can fully use all instances without any information loss as compared to using downsampled

datasets. Second, since the revisitation appears to have a huge imbalance, we can apply our method to

the actual system without making any change. Third, this is equivalent to real-world prediction scenario

where the model is asked to predict the user’s next decision when the user’s behavior up to the current

time exists.

However, we also met some new challenges that were not considered before. After splitting the

dataset by time, we had to find a way to deal with partial observations, which are also called as train-

1Stickiness is a marketing term to describe the average time per month at a site.
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?
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Figure 4.2: An example of categorizing training and testing cases in our revisit prediction task. Train-

censored cases are marked with two circles and these instances are used for both training and testing.

censored visits. Train-censored visits are partially observed during the training period that require

prediction for the remaining test period. In other words, train-censored visits are the last visit of

customers collected during the training period. In most offline stores, the amount of censored visits

is very large compared to revisited cases. However, the regression model in Chapter 3 cannot use any

information from censored visits since we do not know when will they come back. This causes not only

a huge information loss but also resulting in a biased prediction since a model is trained with revisited

cases only. At the same time, train-censored visits are the subject of prediction. For companies, it is

necessary to predict the possibility of revisit for train-censored visits since they would like to know their

customers are completely churned or not [43]. Those customers already experienced the store, increasing

their retention leads to a long-term benefit. In Figure 4.2, we illustrate an example of categorizing

training and testing cases in our revisit prediction task. As illustrated, train-censored instances can be

also used to train the model as well as they are used for testing. Since we split the data by time, partial

information up to time t1 can only be used for model training.

In addition to that, the good prediction model should predict the revisit of new visitors appeared

during the testing period. In this thesis, we simply call the visits from the new visitors as testing

instances. Predicting revisit of censored customers and new visitors together is very challenging, since

the characteristics of those two groups are inherently different such as the remaining observation time

and their visit histories. A big challenge comes from the difference of class distribution between the

training, train-censored and testing instances. Figure 4.3 illustrates this phenomenon. A usual data

mining classification task assumes that the class distributions between training and testing set are the

same. However, it does not hold in our new setup and it gets worse by changing training length. Fard

et al [22] also emphasized that predicting train-censored instances in longitudinal data is difficult owing

to the event rate decaying with the observation time. They call this prediction setting as early-stage

event prediction and make a distinction of it with a event prediction where training and testing data

is collected during the same time period or same observation length. For example, if we assume the

customer arrival process follows the Poisson Process [97], the expected revisit interval of train-censored

instances is always larger than the expected revisit interval of testing instances appeared in the test

period owing to the memoryless property.
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Train instances:
Test instances:

(a) User based splitting: Although this was not the best prediction setup, the revisit

interval distribution and the revisit ratio between training and testing sets were similar by

the law of large numbers. Therefore, the classification model learned from the training set

is effective to predicting testing instances. In this example, E[RVbin(v) | v ∈ Vtrain)] and

E[RVbin(v) | v ∈ Vtest] are both 3
4
.

Train instances:
Test instances:

Train period Test period

(b) Time-based splitting: In the new prediction settings, the revisit interval distribution

and the revisit class distribution between training and testing sets are inherently different

due to censoring effects. The classification model learned from training set might have

difficulty to predicting testing instances. In this example, E[RVbin(v) | v ∈ Vtrain] = 2
3
,

whereas E[RVbin(v) | v ∈ Vtest] = 0.

Figure 4.3: Additional class imbalance occurred by new data splitting scheme.

In summary, we focus on the following challenges to make our prediction framework successful in

real application settings:

• Applied time-based splitting instead of 5-fold CV based on users.

• Used original imbalanced dataset instead of downsampling it.

• Considered both censored customers and new visitors for testing our framework.

We believe these principles are crucial in applied data science research and a big advantages over

the previous works which compromise difficulties. The SurvRev model is a new solution to handle these

challenges. Before presenting our SurvRev model, we present some backgrounds on survival analysis.
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Figure 4.4: An example of survival analysis for life-time prediction2.

4.2 Background on Survival Analysis

Survival Analysis [111] is a branch of statistics for analyzing the expected duration of time until

certain events happen. It originates from the medical domain where new patient’s expected time to

events should be predicted from previous observations. Using survival analysis, one can ask the following

questions: What is a ratio of survival after 5 years after being diagnosed as colon cancer? Of those

who survive, what rates will they die? Researchers expanded the concept of an event and adopted the

theory to diverse problems not only in the medical domain, but it is also called as reliability theory in

engineering domain or duration analysis in economics. More generally, it involves the modeling of time

to event data. Recent work include web browsing [12], churn analysis [43], and bidding prediction [95].

One of the biggest benefit by adopting survival analysis is to use partial observations, which are

common in longitudinal studies. In our problem setting, not every customer revisits during the observa-

tion time. For some stores, the revisit ratio is below 50 % even if we collected signals for more than 2

years, which means that more than 50 % of the visits are considered as missing data in general regression

settings. Surely one would not want to exclude all of those visits from the study by declaring them

as missing data, while training a model to predict a revisit interval of new visitors. In our prediction

model, we would like to interpret those footprints as “The customer visited our store twice during the

summer, but he did not come again before the year ends” and get benefit from them by using the partial

information. The presence of incomplete observations is called censored observations [32], which brings

a unique challenge in survival analysis and differentiates survival analysis techniques from other stan-

dard regression methods [65]. In the following paragraph, we briefly introduce the basic concepts and

notations in survival analysis.

Notation

In survival analysis, we divide data into two categories: censored and uncensored. Censored data

comes out when an event has not occurred during the observation period. In our problem settings, the

2Image courtesy of http://www.sthda.com/english/wiki/cox-proportional-hazards-model.
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Table 4.1: Summary of three types of statistical methods in survival analysis.

Type Advantages Disadvantages Methods

Non-parametric Efficient when no suitable

theoretical distributions are

known.

Difficult to interpret,

Utilize labels only and

ignore attributes.

Kaplan-Meier [47], Nelson-

Aalen [83, 1], Life-Table [18].

Semi-parametric The knowledge of the under-

lying distribution is not re-

quired.

Distribution is still un-

known, not easy to inter-

pret.

Cox model [17], Regularized

Cox [107], Time-Dependent

Cox [24].

Parametric Easy to interpret, efficient

when the survival times fol-

lows a particular distribution.

Fragile when the distri-

bution assumption is vi-

olated.

Tobit [108], AFT [112],

Buckley-James [11], Penal-

ized Regression [127].

last visits of all customers consist of a set of censored visits. Since the data collection period is finite,

we do not know the exact revisit interval for those censored visits. Uncensored data is a data which an

event has occurred during the observation period. In our settings, all preceding visits before the last

visit comprise a set of uncensored visits.

The survival function is conventionally denoted as S(t), which is defined as S(t) = Pr(T > t). That

is, the survival function means a probability that the event time T is later than the certain time t.

Naturally, the function is decreasing and S(0) = 1. The lifetime distribution function F (t) is a comple-

ment of the survival function, which is defined as F (t) = Pr(T ≤ t) = 1− S(t). Since it is a cumulative

distribution function of time-to-event, we can also find the event density function f(t) by differentiating

F if it is differentiable, f(t) = F ′(t) = d
dtF (t), that is, a rate of events per unit time. The hazard function

λ(t) is one of the most important functions in survival analysis, which is defined as the event rate at

time t conditioned that the item has been survived until time t.

λ(t) = lim
dt→0

Pr(t ≤ T < t+ dt|T > t)

dt

= lim
dt→0

Pr(t ≤ T < t+ dt)

dt · S(t)

=
f(t)

S(t)
.

Consider the definition of f(t), which can also be expressed as f(t) = − d
dtS(t), the hazard function can

be represented as:

λ(t) =
f(t)

S(t)
= −S

′(t)

S(t)
= − lnS(t).

By integration, the survival function S(t) can be written as S(t) = exp(−
∫ t
0
λ(u)du).

Traditional Statistical Methods

Traditionally, hazard function in survival analysis has been estimated by three types of statistical

methods [60]: non-parametric, semi-parametric, and parametric methods. We borrow Table 4.1 from a

comprehensive survey paper [111] to summarize the statistical methods in survival analysis.

Non-parametric methods are more efficient when there is no underlying distribution for the event

time or the proportional hazard assumption does not hold. Kaplan-Meier [47], Nelson-Aalen [83, 1], and

Life-table [18] methods are non-parametric approaches that have been widely used. Using these methods,

one can easily get the empirical estimate of the survival function. By using only event time information,
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these methods are fast enough to catch overall distribution without setting any parameters. However,

these methods ignore covariates of each instance, therefore not suitable for revisit prediction.

Semi-parametric methods are hybrid approaches that can obtain more precise estimators than the

non-parametric methods, or obtain broader estimators than the parametric methods. In semi-parametric

models, no underlying distribution is required, but the attributes assume to have exponential relations

for outcome variable. Diverse variation of Cox model [17] has been proposed, such as adding L1 or

L2 regularization term (Regularized Cox) [107], considering time-dependent covariates (Time-dependent

Cox) [24], and considering mandatory covariates in a boosting scheme (CoxBoost) [8].

Parametric methods are efficient and effective when a time-to-event process follows a probability

distribution. By specifying a parametric form of S(t), we can get the benefit of concise equations already

derived for each distribution. By specifying a parametric form, parametric methods can easily compute

the expected failure time, also compute selected quantiles, and estimate survival functions more cor-

rectly than other methods assuming the parametric form is right [79]. Some popular distributions for

estimating survival curves are Weibull, exponential, extreme value, log-normal, and log-logistic distribu-

tion [3]. Tobit [108], Accelerated Failure Time (AFT) [112], Buckley-James [11], and penalized regression

models [127] are popular parametric methods for survival analysis.

Machine Learning on Survival Analysis

To understand behaviors from large-scale and high dimension data with complex survival function,

machine learning and deep learning based survival analysis methods have been proposed with increasing

computing power. While taking advantage of the concept of survival analysis, machine learning, and

deep learning, approaches effectively handle censored datasets in an advanced way. Some algorithms

also empower traditional statistical models by relaxing distributional assumptions and optimization con-

straints. Popular machine learning methods such as Bayesian methods [92, 22], SVM [50], boosting [36],

neural networks [10], survival trees [9], and survival forests [41, 42] have been tailored to handle censored

data. Among those approaches, we will summarize several notable work proposed in the past few years.

Recent Trends on Survival Analysis

In this part, we would like to explore the latest trends in survival analysis by their model and

domain, then we introduce some work that focus on slightly different viewpoints.

By employing the elastic net as the regularization term, Yan et al [65] proposed regularized para-

metric censored regression for high-dimensional data. Gaussian processes are also successfully applied to

survival analysis. Tamara et al [23] applied Gaussian processes to model non-parametric variations away

from parametric baseline hazard, thus successfully handled left, right and interval censored cases.

Patients with reduced immunity are more susceptible to various diseases. In this case, a model should

be designed for jointly assessing a patient’s risk of multiple adverse outcomes. We call this setting as

competing risks. Deep multi-task Gaussian process [4] with non-parametric Bayesian model showed its

effectiveness over classical models. Lee et al [59] applied n separated fully connected neural networks with

residual connections for segregating the effects by different sources of diseases. Like above-mentioned

papers, deep survival analysis is applied for diverse problems in the medical domain. Some use cases

are for analyzing kidney graft [77], for predicting clinical outcomes from cancer genomic profile [123], for

personalized predictions [121], and for personalized treatment recommender system [48]. Usually, in this
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medical setting, we assume that event happens once during the lifetime so the predictive analytics model

focuses on learning from other instances, rather than focuses on personalized training.

Survival analysis can also be used for time-series data where multiple events occur consecutively.

Variation of Recurrent Neural Networks (RNN) [58] such as LSTM [35] is used as a building block for

survival analysis with time-series data. Using LSTM and custom 3-way factor layer with multiple outputs,

Jing et al [43] studied churn prediction and next action recommendation at the same time by multi-task

learning. The idea of quantizing hazard rate is widely used for subsequent papers [59, 95]. In this scheme

of music streaming services, each session is recorded in each LSTM cell and the output of each cell turns

out to be a set of quantized hazard rates. Using this set of rates, the model minimizes the negative

log-likelihood loss for representing gaps between events correctly. Zhou et al [126] used a customized

fast-slow recurrent network to differentiate a session sequence and an item sequence in online shopping,

and this method shows its effectiveness in click and dwell time prediction. Check-in time prediction in

location-based social networks also gets benefit from recurrent-censored regression (RCR) model [120].

Their RCR model used a recurrent neural network to learn latent representations from historical check-

ins of both actual and potential visitors, and use those outputs to censored regression for making a

prediction. The research team tweaks their approach to recurrent spatiotemporal point process to take

advantage of precedent location information on user trajectories [119]. The RNN model is also successfully

adopted for personalized survival analysis in clinic datasets when the patient feature has been tracked

over time [28]. Even though the feature values are measured once, Ren et al [95] successfully used LSTM

in the sense that the hazard rate can be learned autoregressively through time. Although each session is

not clearly separable in the above two settings, they were able to take advantage of RNN while modeling

the temporal relevance wisely.

On the other side, some studies focus on the subtle difference to survival analysis and emphasize

on their new problem settings. Criteo, a global display advertising company, released their solution

for predicting conversion rates on their service [13, 12]. They focused that some visitors in their online

shopping mall may not eventually convert to a potential customer, unlike survival time analysis where a

patient will eventually die. From this intuition, they suggested a concept of delayed feedback to describe

a time between ad-clicking and conversion. They combined two models for capturing conversion itself

and for capturing delay before conversion. Fard et al [22] emphasize the difference between early stage

prediction with survival analysis and time series forecasting. They focus on predicting an event occurrence

at a future time point using only the information collected before certain observation time. By agreeing to

this idea, we also divided the testing set into train-censored case and first-time visitor case. More recently,

Zhang et al [125] train a neural network for remaining useful life prediction, similar to reliability theory, by

providing a new censoring Kullback-Leibler divergence for evaluating the dissimilarity between the binary

classification probabilities and the actual survival process. Researchers are also interested in studying

evaluation metrics in survival analysis and perform an in-depth analysis of the well-known evaluation

metric concordance index (c-index) [93], which is a metric for measuring pairwise ranking accuracy.

Lastly, I would like to introduce publicly available packages in survival analysis. Python lifeline

package3 and R survival package4 contain the core survival analysis routines for implementation, and

they can be used for understanding code bases and for baseline implementation. I hope this summary

helps readers who are interested in predictive analytics with censored data.

3https://github.com/CamDavidsonPilon/lifelines
4https://cran.r-project.org/web/packages/survival/survival.pdf
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Figure 4.5: The architecture of our SurvRev model. Here is a training case for an instance v3. The current

visit data and its histories are passed through low-level encoders. Learned representations pass through

a high-level event rate predictor consisting of LSTMs and fully connected layers. The output is the event

rates for the next k days. After passing through several conversion steps, it minimizes the model loss.

In this example, v3 is a censored case that has not been revisited for 120 days. Therefore, the output

event rates of v3 that passed through the model are optimized to reflect this information. It is a big

improvement since we ignored this censored case for training the regression model in the previous chapter.

4.3 Key Contribution: Deep Survival Model (SurvRev)

In this section, we introduce our approach to predict customer revisit. We named our model as

SurvRev, where the meaning of an acronym is a Survival Revisit prediction model.

4.3.1 Overall Architecture

Figure 4.5 illustrates the overall architecture of our SurvRev model. The SurvRev model is designed

as the combination of two modules: a low-level visit encoder (§ 4.3.2) and a high-level event rate predic-

tor (§ 4.3.3). A low-level visit encoder is to learn hidden representation from each visit and a high-level

event rate predictor is to estimate the event rates for the future by considering past information alto-

gether. The final output of the high-level module is a set of predicted revisit rate for next k days. In

order to calculate the loss function, we do some calculations for converting event rates (§ 4.3.4) to revisit

probability at time t and the expected revisit interval. The whole model is trained by four different types

of loss functions (§ 4.3.5), which are designed to optimize prediction results in various metrics.

4.3.2 Low-level Visit Encoder

Figure 4.6 illustrates the architecture of the low-level visit encoder. In the low-level visit encoder,

the main area sequence inputs go through three consecutive layers and combined with auxiliary visit-level
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Figure 4.6: The low-level visit encoder of SurvRev model.

inputs—user embeddings and handcrafted features. We first introduce three-tiered main layers for area

inputs, then introduce the process line of auxiliary visit-level inputs.

Processing Area Sequences

The first layer which an area sequence passes is a pretrained area embedding layer to get the dense

representation for each sensor ID. We prepared the area pretrained embeddings and the user pretrained

embeddings by using Doc2Vec [57] algorithm, implemented5 in Gensim library [94]. After applying em-

beddings to each element of an area sequence, we concatenated it with the dwell time of each area. Then

it goes through a bidirectional LSTM (Bi-LSTM) [101] to find relations back and forth. We expect the

Bi-LSTM to learn meaningful sequential patterns that determine customer revisit. Each LSTM cell

emits its learned representation, and the result sequences pass through a one-dimensional Convolutional

Neural Networks (CNN) [55] to learn higher-level interaction. We expect CNN layers to learn higher-

level representations from wider semantics, which are previously designed from the concept of multilevel

location semantics such as category-level or gender-level. In business, the number of CNN layers can be

determined depending on how many meaningful semantic levels that the store manager wants to observe.

The output of the CNN layer goes through the attention network [6] to look over all the information that

each visit contains. We expect the attention layer to highlight the specific part of the motion pattern

which determines customer revisit. Through this sequence of processes, SurvRev can learn the diverse

levels of hidden representations from the area sequences of each visit.

5Doc2Vec was popularized by Gensim (https://radimrehurek.com/gensim), a widely-used implementation of paragraph

vectors.
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Adding Visit-level Features

From here, we concatenate a user representation with a area sequence representation, then applied

fully connected layers (FC) with ReLU [29] activation. We can implicitly control the importance of two

representations by changing dimensions for both inputs. ReLU activation is done to align values into

positives before combining with handcrafted features, which are positives too. Finally, we concatenate

selected handcrafted features with the combination of user and area representations. The handcrafted

features contain crucial information for summarizing visits and revisit prediction that cannot be directly

captured by the boxed component in Figure 4.6. The selected handcrafted features are listed as follows.

• Total dwell time: How long does the customer stay during this visit?

• Average dwell time: How long does the customer stay on average in one area?

• Number of areas visited : How many times has the customer moved between different areas?

• Number of unique areas visited : How many unique areas captured during this visit?

• Visit day, hour, and its combination: What day of the week (Mon–Sun) and when did the customer

visit (0–23 o’clock)? The combined feature is a 168-dim made from (day, hour) tuple, since the visit

time may have different meanings even though the customer visit at the same hour or the same day.

We used the numeric value instead of one-hot encoding.

• Number of visits: How many times have the customer visited the store?

• Previous interval : How long has it been since the last visit? If the visit is collected from the first-time

visitor (left-censored), the interval between the first observation to the event occurrence point is used.

We applied batch normalization [40] before passing a final result through the high-level module of

SurvRev. It is used to normalize the input layer by adjusting and scaling the activations, results to

improve the speed, performance, and stability of artificial neural networks.

4.3.3 High-level Event Rate Predictor

FC Layers

𝑣1 𝑣2 𝒗𝟑

Visit representations
generated from the 

low-level visit encoder

LSTM LSTM

LSTM LSTM LSTM

LSTM cell

Rates for next 365-day

…

…

Figure 4.7: The high-level event rate predictor of SurvRev model.
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Figure 4.7 illustrates the architecture of the high-level event rate predictor. The main functionality

of the high-level event rate predictor is to consider the customer’s previous histories by using dynamic

LSTMs [35] and predict the revisit rate for next k days.

Assuming customers with multiple previous visits, we will describe how the data flow. For each

customer, a sequence of outputs from low-level encoder becomes the input to the LSTM layers. We use

dynamic LSTMs to allow for variable sequence lengths, which has a parameter to control the maximum

number of events to consider. The sequential output from each LSTM cell goes through our final fully

connected layer with softmax activation. The dimension of the final FC layer is k, which is a tuneable

parameter. We set it as 365 in order to represent quantized revisit rates [43] for the next 365 days.

Another reason to set k as 365 is that the total length of our dataset is 365 days. For convenience, we

call this 365–dim revisit rate vector as λ̂ = [λ̂t, 0 ≤ t < k, t ∈ N]. Each element λ̂t indicates a quantized

revisit rate in a unit time bin [t, t+ 1).

4.3.4 Output Conversion

In this section, we explain how to convert 365-dim revisit rate λ̂ to other criteria such as probability

density function, expected value, and complementary cumulative distribution function (CCDF). These

criteria will be used for calculating diverse loss function in § 4.3.5. Remind that RVdays(v) denotes a

next revisit interval of visit v. This means that a revisit occurs after RVdays(v) from the time of customer

make a visit v to the store.

1. Substituting a quantized event rate λ̂ from 1 results in a survival rate. Survival rate 1 − λ̂ denotes

a rate at which revisit will not occur during the next unit time conditioned that the revisit has

not happened so far. Therefore, cumulative product of the survival rate through time returns the

quantized probability density function p(RVdays(v) ∈ [t, t+ 1)).

p(RVdays(v) ∈ [t, t+ 1)) = ŷt ·
∏
r<t

(1− λ̂r). (4.1)

2. Then, the predicted revisit interval can be represented as a form of the expected value as in Eq. 4.2.

R̂V days(v) =

k∑
t=0

(t+ 0.5) · p(RVdays(v) ∈ [t, t+ 1)). (4.2)

3. By using the last time of the observation period together, it is possible to predict whether or not a

revisit is made within a period, denoted as R̂V bin(v). Here, we define a suppress time tsupp(v) =

tend − tv where tv denotes a visit time of v, and tend denotes a time of observation ends. We name

it as suppress time to convey the meaning that the customer suppresses his/her desire to revisit until

the time of observation ends by not visiting the store again.

R̂V bin(v) =

1 if R̂V days(v) ≤ tsupp(v)

0 if R̂V days(v) > tsupp(v).
(4.3)

4. Calculating survival rate with a suppress time gives CCDF and CDF. CCDF and CDF will be used

to compute the cross entropy loss. When tsupp(v) is a natural number, the following holds.

p(RVdays(v) ≥ tsupp(v)) =
∏

r<tsupp(v)

(1− λ̂r). (4.4)

p(RVdays(v) < tsupp(v)) = 1−
∏

r<tsupp(v)

(1− λ̂r). (4.5)

56



4.3.5 Loss Functions

We designed a custom loss function to learn parameters of our SurvRev model. We defined four

types of losses—negative log-likelihood loss (Luc−nll ), RMSE loss (Luc−rmse ), cross entropy loss (Luc−ce +

Lc−ce ), and pairwise ranking losses (Luc−c−rank ). The custom loss function is a combination of each loss.

The prefixes Luc, Lc , and Luc−c mean that each loss is calculated for uncensored, censored, both samples,

respectively. Table 4.2 summarizes the main aspects of our loss functions which will be described in the

following subsections.

Table 4.2: Summary of losses used in SurvRev model.

Notation Meaning Details References

Luc−nll Negative log likelihood Maximizing likelihood of revisit probability in par-

ticular time bin. Designed five sub-losses Luc−nll−date ,

Luc−nll−week , Luc−nll−month , Luc−nll−season , and Luc−nll−day .

e.g., Luc−nll−date : If the customer revisited in 29.5

days, the value of p(RVdays(v) ∈ [29, 30)) should

be high.

Extension of Ren et

al [95].

Luc−rmse RMSE The error between predicted revisit inter-

val and actual revisit interval. Defined as

MSE(R̂V days(v), RVdays(v)).

One of the evalua-

tion metric in Kim

et al [52].

Luc−ce Binary cross entropy Partial binary cross entropy value between

P (RVdays(v) ≤ tend) and RVbin(v), for v ∈
Vuncensored .

Luncensored in Ren et

al [95].

Lc−ce Binary cross entropy Partial binary cross entropy value between

P (RVdays(v) ≥ tend) and RVbin(v), for v ∈ Vcensored .

Lcensored in Ren et

al [95].

Luc−c−rank Pairwise ranking loss Minimize the number of wrong pairs. The pair

is wrong if R̂V days(vi) > R̂V days(vj) when

RVdays(vi) ≤ RVdays(vj).

L2 in Lee et al [95].

Negative Log-likelihood Loss: Luc−nll

Since there is no ground truth revisit interval distribution, we would like to maximize the likelihood

of the empirical data distribution. For consistency, we convert it to negative log-likelihood loss Luc−nll (NLL

loss) by setting a negative log on top of the likelihood. Minimizing the negative log-likelihood loss obtains

the same effect of maximizing the likelihood value itself. Luc−nll computation is only done for uncensored

samples v in training set that have a valid value of next revisit interval ∀RVdays(v) ∈ R.

For step-by-step optimization, we design five cases of Luc−nll by changing interval parameters. Those

are Luc−nll−date , Luc−nll−week , Luc−nll−month , Luc−nll−season , and Luc−nll−day . We explain it one by one by considering

the case when RVdays(v) = 29.5.

• Luc−nll−date : If the customer revisited in 29.5 days, the model learns to increase the likelihood of daily

interval RVdays(v) ∈ [29, 30).

• Luc−nll−week : For the above case, the model considers that the customer revisits after 4–5 weeks, so it

learns to increase the likelihood of weekly interval RVdays(v) ∈ [28, 35).

• Luc−nll−month : Similarly, the model divides the interval into monthly bins, so it learns to increase the

likelihood of monthly interval RVdays(v) ∈ [30, 60).
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• Luc−nll−season : For some applications (i.e., clothing), it is important to capture seasonal visitation pattern.

This option allows the model to capture the likelihood of 3-month long interval, so it learns to increase

the likelihood of the first interval RVdays(v) ∈ [0, 90).

• Luc−nll−day : There may be a customer who visits the store only on weekdays or visits only on weekends.

So it is necessary to consider the information about the day of the week for predicting RVdays(v).

If the revisited day is Saturday, then this loss function allows model to increase the likelihood of

tv +RVdays(v) ∈ Saturday.

Depending on the task domain, the losses to focus on will be slightly different. In total, the final negative

log-likelihood loss Luc−nll can be represented as a weighted sum of those five losses.

RMSE Loss: Luc−rmse

The second loss is a Root Mean Squared Error (RMSE) loss Luc−rmse which minimizes the error

between predicted revisit interval R̂V days(v) and the actual interval RVdays(v). Luc−rmse makes the

model to minimize its value for uncensored samples. One can think that the RMSE loss is a continuous

expansion of negative log-likelihood loss. Unlike NLL loss, RMSE value can be computed even if the

predicted value does not belong to a certain value range, which corresponds to a certain bin in Luc−nll .

Cross Entropy Loss: Luc−c−ce

The cross entropy is the first set of losses that can be measured for both censored and uncensored

visits. The cross entropy loss Luc−c−ce measures the performance of a classification model whose output

is a probability value between 0 and 1. It decreases as the predicted probability converges to the actual

label. We separate Luc−c−ce into Luc−ce and Lc−ce denoting the partial cross entropy value of uncensored set

and censored set, respectively:

Luc−c−ce = Luc−ce + Lc−ce. (4.6)

Theorem 4.3.1. The partial cross entropy loss Luc−ce for a set of censored visits is equivalent to the

negative log-likelihood. That is,

Lc−ce = −
∑

v∈Vcensored

log p(RVdays(v) > tsupp(v)). (4.7)

Proof. Let us derive the partial cross entropy loss Lc−ce for censored cases. From the definition of the

cross entropy H(p, q) = −∑
x∈X p(x) log q(x), we can interpret that q(x) corresponds to the CCDF value

for the censored case, which can be expressed as p(RVdays(v) > tsupp(v)). Also, p(x) = 1 because we

know the RVbin(v) value of the training set for sure. After substitution, the result −∑
x∈X log q(x) is

equivalent to the definition of the negative log-likelihood.

H(p, q) = −
∑
x∈X

p(x) log q(x)

= −
∑

v∈Vcensored

1 · log p(RVdays(v) > tsupp(v)).
(4.8)

By minimizing Lc−ce , the model is trained in the direction of CCDF increasing to one. This is

desirable for censored cases where RVbin(v) = 0. Although we do not have any information about the

true event time for a censored case [95], in SurvRev we are able to calculate the CCDF, p(RVdays(v) >

tsupp(v)), from the event rates λ̂, as explained in § 4.3.4.
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Corollary 4.3.1.1. The partial cross entropy loss Luc−ce for a set of uncensored visits is equivalent to the

negative log-likelihood. That is,

Luc−ce = −
∑

v∈Vuncensored

log p(RVdays(v) ≤ tsupp(v)). (4.9)

Proof. It is self-evident by interpreting q(x) as the CDF value for the censored case. Because the

uncensored visit occurs when the customer returns before the observation time is over, the loss between

the CDF value q(x) = p(RVdays(v) ≤ tsupp(v)) and p(x) = 1 should be minimized.

By minimizing Luc−ce , the model is trained in the direction of CDF increasing to one. This is for

uncensored cases where RVbin(v) = 1.

Pairwise Ranking Loss: Luc−c−rank

Motivated by ranking loss function [59] and a c-index [93], we introduce the pairwise ranking loss to

compare the orderings between predicted revisit intervals. This loss function is to fine-tune the model

by making the tendency of the predicted intervals and the actual intervals similarly. The loss function

Luc−c−rank is formally defined by following steps.

1. First, we define two matrices P and Q as follows:

Pij = sign(R̂V days(vj)− R̂V days(vi))
Qij = sign(RVdays(vj)−RVdays(vi)).

(4.10)

For a censored visit v, we use a suppress time tsupp(v) instead of using an actual revisit interval

RVdays(v). The substitution is for making a comparison between uncensored and censored cases.

For example, two visits vi and vj are comparable when vi satisfies RVdays(vi) = 3 and vj satisfies

tsupp(vj) = 5.

2. Then, we define a new matrix U as a Hadamard product of P and −Q.

U = P �−Q. (4.11)

3. Next, we define a new matrix W as follows.

Ŵij =

1 if min(tsupp(vj), RVdays(vj)) ≥ RVdays(vi)
0 else.

(4.12)

4. The loss is defined as follows:

Luc−c−rank =
∑

i<j,vi∈Vuncensored

Uij ·Wij . (4.13)

By minimizing Luc−c−rank , our model encourages correct ordering of pairs and discourage incorrect

ordering of pairs. The constraint vi ∈ Vuncensored is added to ignore incomparable pairs. A binary

variable Wij also removes the effect of incomparable pairs due to the censoring effect such as vi and

vj with RVdays(vi) = 3 and tsupp(vj) = 2, respectively. In this way, the final loss function behaves

similar to c-index metric.

59



Final Loss

Combining all the losses, we can design our final objective L to train our SurvRev model.

arg min
θ
L = arg min

θ
Luc−nll · Luc−rmse · Luc−c−ce · Luc−c−rank.

where θ is a model parameter of SurvRev. The reason for using the product loss instead of using the sum

of each loss is to reduce parameters to control the balance between losses to stabilize model training.

4.4 Experiments

To prove our model’s excellence, we performed diverse experiments on real-world customer mobility

dataset. We first introduce our efforts to create a revisit prediction benchmark dataset. After introducing

the tuned parameter values of the SurvRev model, we briefly summarize the evaluation metrics needed

for revisit prediction (All in § 4.4.1). We show the superiority of our SurvRev model by comparison with

seven different baseline event prediction models (§ 4.4.2).

4.4.1 Settings

Data Preparation

We prepared another set of revisit prediction benchmark dataset by following principles introduced

in Chapter 4.1. This new version of the dataset mimicked much more realistic prediction setting than

the one in the previous chapter. The dataset consists of customer trajectory inside five different off-line

stores. We consider each store independently since there are not many customer overlaps between the

stores. Here is a brief step-by-step introduction on how to generate this dataset.

From the dataset of seven stores used in the previous chapter, we chose five featured stores L GA,

L MD, O MD, E GN, E SC and renamed as A, B, C, D, and E, respectively. We removed A GN and

A MD due to their relatively short data collection periods, which are around 220 days. For the remaining

five stores, we left only one year amount of data from 2017-01-01 to 2017-12-31. We decided to use the

year 2017 data to keep coherency since the data provider changed the area sensing logics at the end of

2016, also we think the remaining data is long enough to study customer revisit.

We randomly selected 50, 000 device ID (customer) for the benchmark since we knew that footprints

from 50, 000 users are large enough to guarantee the model performance (§ 3.3.3). We also prepared toy

datasets with 1, 000 and 5, 000 customers, the smaller data is a subset of a bigger one. In this experiment,

we followed a 10-minute rule for grouping sessions into visits. If a customer session reappears within

10 minutes, we do not consider the subsequent visit as a new visit. We also made a several version of

training and testing set by varying training length—60, 120, 180, 240, 300 days. Among these, we used

two datasets trained for 180 days and 240 days. Due to the time constraint, we included results by

running on smaller datasets with 5, 000 users.

We carefully designed the dataset to prevent leakage. While generating testing set, we only retained

the first visit to prevent unjustified predictions. Otherwise, one can directly calculate the revisit interval

of the former visit by comparing two visit dates. Besides, while generating labels for training data, we

only used the observations until the end of the training period. For instance, the binary label is zero

even if the customer revisited during a testing timeframe. On the other hand, the label is updated to

one in a train-censored set.
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?

50,000 
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Figure 4.8: Explaining revisit prediction benchmark dataset.

Example. Figure 4.8 illustrates our data settings by showing three customers a, b, c. Among six visits,

three visits, va1, va2 and vb1, and their revisit status up to time t1 are used as a training set, only va1 is

recorded as a visit with a revisit. The testing set includes a single event—vc1—which visited the store

for the first time after time t1. The train-censored set includes two censored cases—va2 and vb1. To

prevent data leakage, we exclude va3 and va4 from a testing instance. In the train-censored set, a revisit

ratio is 1/2 since va2 is recorded as a revisited case. In summary, the model requires to predict revisit of

three testing instances—vc1, va2, and vb1—until time t2 by having information from the training set. We

conjecture that the performance of this off-line batch prediction can be the lower bound of the actual

online testing. In the actual setting, the model can be continuously refined as the prediction progresses.

Data Statistics Table 4.3 describe several statistics of the datasets used in this chapter. Vtr, Vte, and

Vtc are the acronyms of the training set, testing set, and train-censored set. We can observe the huge

difference of average revisit rate E[RVbin(v)] and average revisit interval E[RVdays(v)] between three

sets. There are several things to note in order to understand the statistics.

• E[RVbin(vte)] is relatively smaller than E[RVbin(vtr)]. The difference between two values are caused

by data removal explained in the previous example. Vtr includes multiple visits for regular customer,

whereas Vtc includes a single visit for each customer.

• Interestingly, E[RVbin(vtc)] is relatively smaller than E[RVbin(vte)]. This statistics is counterin-

tuitive since the censored instances vtc secure longer time to be recognized as a revisit, and we

expected that customers who visited earlier have more chance to revisit during the remaining time.

To explain through Figure 4.8, censored instances vtc can fully use the testing period [t1, t2] until

the observation ends. However, new visitors vte have shorter remaining time than vtc since they

visit the store during the testing period [t1, t2]. These unexpected outcomes are due to the decreas-

ing customer interest over time. We conjecture that some censored customers vtc already lost the

intention to revisit, so their average revisit probability is lower than vte, in spite of having more

available time to revisit. Figure A.3(c) in Appendix A proves this phenomenon by showing how

E[RVbin(v)] in each dataset changes over time.
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Table 4.3: Statistics of the datasets (training length = 180 days).

(a) Statistics on dividing first 180 days as training period.

Store ID A (L GA) B (L MD) C (O MD) D (E GN) E (E SC)

Length (days) 365 365 307 300 312

Sensors 14 11 27 40 22

# of sessions 745,182 948,763 1,322,130 1,572,592 1,491,874

|Vtr| 39,473 45,051 70,173 35,259 50,898

|Vte| 24,166 25,664 21,288 20,907 22,991

|Vtc| 31,409 29,511 36,462 28,069 32,208

E[RVbin(vtr)] 0.204 0.345 0.480 0.204 0.367

E[RVbin(vte)] 0.204 0.285 0.381 0.116 0.233

E[RVbin(vtc)] 0.191 0.203 0.242 0.115 0.223

E[RVdays(vtr)] 38.7 26.4 24.3 33.9 31.0

E[RVdays(vte)] 45.7 30.2 19.0 28.3 30.6

E[RVdays(vtc)] 165.2 137.1 105.6 107.0 109.6

(b) Statistics on dividing first 240 days as training period.

Store ID A (L GA) B (L MD) C (O MD) D (E GN) E (E SC)

Length (days) 365 365 307 300 312

Sensors 14 11 27 40 22

# of sessions 794,635 1,061,244 1,534,905 1,769,480 1,723,720

|Vtr| 49,987 57,961 88,692 48,550 67,745

|Vte| 11,403 12,963 5,540 8,260 7,494

|Vtc| 38,179 36,193 43,378 37,562 40,474

E[RVbin(vtr)] 0.236 0.376 0.511 0.226 0.403

E[RVbin(vte)] 0.140 0.183 0.260 0.053 0.112

E[RVbin(vtc)] 0.146 0.152 0.140 0.058 0.126

E[RVdays(vtr)] 52.5 34.2 30.7 40.9 37.4

E[RVdays(vte)] 30.0 15.2 7.1 13.4 17.2

E[RVdays(vtc)] 159.8 129.6 92.7 104.2 103.2

• The value RVdays(v) is calculated among uncensored visits. E[RVdays(vtc) is very long compared

to E[RVdays(vtr) and E[RVdays(vte) since their possible revisit interval spans up to t2.

• We leave the additional exploratory data analysis of our benchmark data in Appendix A.

Hyperparameter Settings

In our experiments, we prepared two sets of pretrained embeddings to feed inputs to our model.

Since we limit the number of user subset for benchmark datasets, the pretrained embeddings are also

learned from the trajectories generated by that user subset. The embedding dimension is set as 64 for

both area embeddings and the user embeddings. A set of new IDs and a set of new areas in the testing set
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are mapped to [unk] and embedded to default values. Since it is finished within one minute, the code to

generate those embeddings runs on-the-fly. For the low-level module, we use 64-dim Bi-LSTM unit with

masking padded areas. The kernel size of CNN is 3, with 16-dim filters, and the number of neurons in

the FC layer is 128. We use one dense layer. For a visit with long sequence, we considered up to k areas

that can cover up to 95% of all cases, where k is dependent on each dataset. In the high-level module,

the dynamic LSTM has 256-dim units and process up to 5 events. We used two layers of LSTM with

tanh activation. The number of neurons in the final FC layer is 365. We used two FC layers with ReLU

activation. For training the model, we used Adam [56] optimizer with learning rate of 0.001. We set

the mini-batch size as 32 and run 10 epochs for 1k and 5k datasets and run one epoch for 50k datasets.

NLL loss Luc−nll is set as the averages of Luc−nll−month and Luc−nll−season . Some of these hyperparameters were

selected empirically by grid search.

Input Settings

We made a switch to control a number of user histories to use when training a SurvRev model. For

predicting last visits (train-censored instances), we used all visits to train the model. For instance, if

an input visit v5 is followed by multiple previous visits, the logs prior to this visit are fed together in

high-level event rate predictor. At the same time, each of his/her prior visits (v1, · · · , v4) is used as a

separate input for the SurvRev model. For predicting first-time visitors (testing instances), only the first

appearances (v1 ∈ Vtrain) were used to train the model. Since there are not exist any prior log for each

training instance, the LSTM length in a high-level event rate predictor is always one.

Evaluation Metrics

We used three evaluation metrics. F-score, and concordance-index (c-index) are used for evaluating

uncensored and censored visits together. Also, root mean squared error (RMSE) is used for evaluating

uncensored cases representing revisited customers. We removed accuracy from our evaluation criteria

since it loses its effectiveness on measuring performance from the imbalanced dataset.

• F-score: An another metric for measuring binary revisit classification performance.

• C-index [93]: A metric for measuring global pairwise ordering performance, the most commonly used

evaluation metric in survival analysis [59, 95]. Figure 4.9 illustrates how to calculate the c-index.

• RMSE : A metric for measuring error between predicted and golden revisit interval. RMSE can only

be measured for cases when their golden revisit intervals exist.

4.4.2 Results

Comparison with Baselines

We verify the effectiveness of our SurvRev model on the large-scale in-store customer mobility data.

For comparison, we implemented eight different event prediction models to fit our datasets. The baselines

include well-known stochastic processes, a semi-parametric statistical model, a state-of-the-art gradient

boosting model, and deep survival analysis models. Detailed explanations of these models are described

as below:

Baselines Without Considering Covariates First three baselines focus on the distribution of revisit

labels and consider them as an arrival process. These baselines do not consider the attributes (=covari-

ates) obtained from each visit.
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(a) Before censoring, c-index is 7
10
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(b) After censoring, c-index is 4
7
.

Figure 4.9: An illustration to describe a c-index metric. Five numbers inside the nodes are predicted

values—3, 1, 4, 2, 5 and the order of the nodes represents their actual value—1, 2, 3, 4, 5. The blue solid

line means that the ordering of the predicted values of the two nodes at both ends of the line matches the

ordering of the actual values. In opposite, the red dotted line represents the case when the ordering is

violated. By censoring instances (black→ white), some pairs are deleted since they cannot be compared

anymore. As a result, the c-index value is changed from 7
10 to 4

7 .

• Majority Voting (Majority): Prediction results follow the majority class for classification, follow the

average values for regression; this baseline is näıve but powerful for an imbalanced dataset.

• Personalized Poisson Process (Poisson) [97]: A stochastic process used to describe customer arrival

patterns. We assume customer inter-arrival time follows an exponential distribution with a constant

λ. To make it personalized, we control λ for each customer by regarding its visit frequency and

observation time.

• Personalized Hawkes Process (Hawkes) [34]: The Hawkes process is an extended version of the Poisson

Process which includes self-stimulation and time-decaying function on the rate λ. We referred the

well-written post6 and the repository7 for our baseline implementation.

Figure 4.10: Hawkes process.

Baselines Considering Covariates Following two models considered covariates derived from each

visit. The Cox proportional hazard model focuses on handling censored data and the gradient boosting

tree model pointed out the interaction and correlation between features. For fairness, we used the same

set of handcrafted feature for the latter baseline.

• Cox Proportional Hazard model (Cox-PH) [17]: Semi-parametric survival analysis model with propor-

tional hazards assumption. Widely used baseline for survival analysis task.

• Gradient Boosting Tree with Handcrafted Features (XGBoost) [52]: Using carefully designed hand-

crafted features with XGBoost classifier [14].

6https://stmorse.github.io/journal/Hawkes-python.html
7https://github.com/stmorse/hawkes
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Baselines Using Deep Survival Analysis The last two models are state-of-the-art survival analysis

models that applied deep learning. The first one is specialized for event processes having long-term

histories. The second model focuses on a death-or-survival scenario with quantized event rates. Deep

learning models have strength in predicting event rate from an unknown distribution. From their model

architecture, we expected the former model has strength for predicting train-censored case and the latter

model has strength for predicting first-time visitor case newly appeared in a testing timeframe.

• Neural Survival Recommender (NSR) [43]: A deep multi-task learning model with LSTM and 3-way

factor unit used for music data with sequential events. The downside of this model is that the input

for each cell is simple, which did not consider lower-level interactions.

Figure 4.11: The architecture of the NSR baseline [43].

• Deep Recurrent Survival Analysis (DRSA) [95]: An auto-regressive model with LSTM. Each cell emits

a hazard rate for each timestamp. The downside of this model is that each LSTM considers only a

single event.

Figure 4.12: The architecture of the DRSA baseline [95].
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Comparison Results Table 4.4 and Table 4.5 summarize the performance of each model on two dif-

ferent testing sets named as a train-censored set (Vtc) and a testing set (Vte), respectively. By predicting

Vtc, we expect to see the superiority of our model on censored data. Also, testing on Vte shows that

our model can effectively predict the revisit behavior of new customers. The result of the prediction on

train-censored set shows that the c-index of SurvRev outperforms other baselines except for our prior

model. On the testing set with first-time visitors, SurvRev outperforms other baselines on optimizing

f-score and shows its effectiveness on optimizing RMSE. As a preliminary result, it is quite satisfying to

observe that our model showed its effectiveness on two different settings. However, it may be necessary

to further tune our model parameters to achieve the best results for every evaluation metrics.

Table 4.4: Superiority of SurvRev compared to baselines, evaluated on train-censored set. We highlighted

in bold for cases when SurvRev shows the best performance among competitors.

(a) C-index (180 days).

Store A Store B Store C Store E

Majority 0.500 0.500 0.500 0.500

Poisson 0.528 0.591 0.588 0.582

Hawkes 0.530 0.593 0.588 0.580

XGBoost 0.420 0.597 0.671 0.549

NSR 0.497 0.497 0.480 0.523

DRSA 0.500 0.500 0.499 0.500

SurvRev 0.561 0.672 0.649 0.647

(b) C-index (240 days).

Store A Store B Store E

Majority 0.500 0.500 0.500

Poisson 0.552 0.622 0.617

Hawkes 0.549 0.624 0.613

XGBoost 0.667 0.568 0.830

NSR 0.509 0.513 0.504

DRSA 0.500 0.500 0.501

SurvRev 0.606 0.726 0.702

(c) F-score (180 days).

Store A Store B Store C Store E

Majority 0.000 0.000 0.000 0.000

Poisson 0.177 0.140 0.187 0.198

Hawkes 0.177 0.135 0.187 0.199

XGBoost 0.083 0.476 0.415 0.414

NSR 0.291 0.244 0.190 0.173

DRSA 0.328 0.337 0.390 0.356

SurvRev 0.328 0.337 0.390 0.356

(d) F-score (240 days).

Store A Store B Store E

Majority 0.000 0.000 0.000

Poisson 0.198 0.157 0.168

Hawkes 0.200 0.155 0.172

XGBoost 0.282 0.475 0.274

NSR 0.192 0.137 0.071

DRSA 0.268 0.274 0.224

SurvRev 0.268 0.274 0.224

(e) RMSE (180 days).

Store A Store B Store C Store E

Majority 108.846 101.433 81.651 79.550

Poisson 180.314 156.230 145.172 156.522

Hawkes 178.164 154.771 143.396 154.709

XGBoost 121.398 116.429 67.458 91.068

NSR 97.067 120.527 138.389 138.003

DRSA 184.234 156.208 123.454 126.421

SurvRev 170.969 144.604 112.603 114.263

(f) RMSE (240 days).

Store A Store B Store E

Majority 92.117 93.360 72.894

Poisson 222.614 183.899 197.638

Hawkes 220.329 186.186 198.293

XGBoost 86.435 123.232 86.118

NSR 108.833 127.130 147.440

DRSA 175.912 155.168 121.681

SurvRev 163.069 144.050 110.525
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Table 4.5: Superiority of SurvRev compared to baselines, evaluated on testing set.

(a) C-index (180 days).

Store A Store B Store C Store E

Majority 0.500 0.500 0.500 0.500

Poisson 0.505 0.506 0.497 0.499

Hawkes 0.504 0.504 0.499 0.507

Cox-ph 0.602 0.586 0.476 0.586

XGBoost 0.514 0.471 0.503 0.510

NSR 0.495 0.499 0.500 0.501

DRSA 0.498 0.499 0.501 0.496

SurvRev 0.499 0.494 0.501 0.505

(b) C-index (240 days).

Store A Store B Store E

Majority 0.500 0.500 0.500

Poisson 0.506 0.499 0.501

Hawkes 0.510 0.501 0.504

Cox-ph 0.616 0.560 0.630

XGBoost 0.420 0.507 0.509

NSR 0.499 0.501 0.507

DRSA 0.499 0.502 0.494

SurvRev 0.489 0.499 0.495

(c) F-score (180 days).

Store A Store B Store C Store E

Majority 0.000 0.000 0.000 0.000

Poisson 0.244 0.302 0.415 0.244

Hawkes 0.242 0.304 0.412 0.241

Cox-ph 0.286 0.353 0.176 0.000

XGBoost 0.236 0.317 0.248 0.097

NSR 0.000 0.000 0.000 0.000

DRSA 0.298 0.360 0.461 0.277

SurvRev 0.315 0.373 0.458 0.295

(d) F-score (240 days).

Store A Store B Store E

Majority 0.000 0.000 0.000

Poisson 0.214 0.275 0.204

Hawkes 0.212 0.276 0.209

Cox-ph 0.000 0.000 0.000

XGBoost 0.025 0.194 0.000

NSR 0.000 0.000 0.000

DRSA 0.245 0.300 0.223

SurvRev 0.272 0.307 0.263

(e) RMSE (180 days).

Store A Store B Store C Store E

Majority 63.901 59.692 46.276 45.847

Poisson 328.468 353.567 315.713 312.333

Hawkes 328.025 356.020 321.984 299.873

Cox-ph 113.263 121.800 108.838 131.550

XGBoost 40.321 36.401 21.508 25.260

NSR 192.233 211.235 215.902 204.495

DRSA 58.575 39.671 26.187 36.783

SurvRev 48.428 34.424 22.743 28.289

(f) RMSE (240 days).

Store A Store B Store E

Majority 87.911 77.485 66.294

Poisson 381.737 401.879 364.398

Hawkes 376.155 415.814 367.684

Cox-ph 159.669 175.057 181.847

XGBoost 29.315 22.872 16.817

NSR 201.367 217.084 213.840

DRSA 42.322 26.703 23.202

SurvRev 32.842 24.072 17.989
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Ablation Studies

Ablation studies refer to experimental studies by removing some components of the model and seeing

how that affects the model performance. Our SurvRev model is composed of two modules, the low-level

encoder and the high-level event rate predictor. Throughout this analysis, we expect to observe the

effectiveness of each module. In particular, we would like to show the performance gain by applying

multiple layers in the low-level encoder.

Ablation by simplifying the low-level module First, we remove some components in the low-level

encoder and see the contributions of each component. Five types of simplified low-level encoders are

designed for ablation studies. For this experiment, the high-level module is maintained without any

change. Variations of low-level encoders are as follows:

• L1 (Bi-LSTM +ATT ): Use only Bi-LSTM and attention layers to represent the visit.

• L2 (CNN +ATT ): Use only CNN and attention layers to represent the visit.

• L3 (Bi-LSTM +CNN +AvgPool): Substitute an attention layer to global average pooling.

• L4 (Bi-LSTM +CNN +ATT ): Use only area sequences through three consecutive layers.

• L5 (Bi-LSTM +CNN +ATT+UserID): Add user embedding results to L4.

• L6 (Bi-LSTM +CNN +ATT+UserID+FE ): Add handcrafted features to L5. This is equivalent to our

original low-level encoder described in § 4.3.2.

Ablation by simplifying the high-level module Second, we simplify the high-level event rate

predictor to see the effectiveness of our original LSTM architecture. Variation of high-level event rate

predictors are as follows:

• H1 (FC +FC ): Concatenate the low-level encoder outputs and then apply a fully connected layer

instead of LSTMs. Final fully connected layers are preserved without any change.

• H2 (LSTM +FC ): Stack (tf.stack) the low-level encoder outputs and then apply two-level LSTM

layers. This is equivalent to our original high-level event rate predictor described in § 4.3.3.
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(a) Low-level variation results.
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(b) High-level variation results.

Figure 4.13: Ablation studies of the SurvRev model.

Figure 4.13 summarizes the ablation study results. These representative c-index results are evaluated

on a train-censored set of Store D having 1,000 customers with 240-day training interval. We found that

low-level visit encoder and the high-level event generator are both necessary for SurvRev architecture. In
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particular, the LSTM structure in the high-level module is much more effective than its replacement, a

fully connected layer. Also, we can see the effectiveness of each layer in the low-level encoder. Perfor-

mance gain by having Bi-LSTM, CNN, ATT are L4 − L2, L4 − L1, and L4 − L3, respectively. Unlike

our expectation, L5 shows slightly lower performance than L4 in this experiment. Nevertheless, the

performance of our final low-level encoder, L6, is superior to all other variations.

4.4.3 Discussions

These are the possible discussion topics to fully understand our SurvRev model.

Finding the Best Parameters Between Loss We have worked on classification and regression tasks

with different statistics. In our problem setting, it was difficult to optimize diverse prediction objectives

at the same time, and we observed that a single metric cannot optimize all evaluation criteria. How to

deal with a problem of competing objectives?

Due to the large portion of censored data, the majority of the customer does not revisit in our

dataset. Because of this limitation, the majority of the data is censored. However, when they revisit,

the interval between two visits tends to be very short. Since the majority of the data is censored, the

cross-entropy loss Luc−ce tends to judge that a new customer will not return. However, the RMSE loss

Luc−rmse tends to train to judge that a new customer will return soon because the uncensored data show

that if the customer visits again, the revisit interval was short. If we configure the loss to optimize only

one objective (e.g., cross entropy), the RMSE results in the final evaluation will be very poor although

the prediction accuracy will be satisfactory. Therefore, the model has to learn both objectives unless

imputing the revisit interval of censored visits. To mitigate the difficulties of finding weights, we applied

the product loss as our objective instead of using the sum loss. However, computing gradient in the sum

loss can be faster than computing gradient in the product loss. Although it can be a time-consuming task,

finding the best parameters to calibrate between losses would be a final challenge for model optimization.

Finding the Right Activation Functions In addition to that, we empirically found that the acti-

vation function of each layer significantly affects the prediction result. At first, we believe that applying

a softmax activation at the last fully-collected layer is ideal since the softmax function makes the sum of

the event rate into one, thus it was possible to keep the revisit probability within a year is less than one.

However, the prediction results for each visit was almost identical owing to the bootstrap rule8. Finding

the right activation functions would be another big challenge that we have.

Case Study We can perform several case study to show the effectiveness of our model. First, we can

break down the performance of our model by controlling the maximum number of visits on our datasets.

By showing this, we will be able to emphasize the strength of our model in a particular experimental

setting. Second, we will put additional effort to make our deep learning model interpretable in a real-

world business. Interpretability is essential for human-AI cooperation, model debugging, and detecting

bias9. By interpreting the model, we may suggest some unknown features relates to customer revisit by

understanding outputs from each layer.

8Revisit probabilities were 0.632.
9https://github.com/Microsoft/interpret
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4.5 Summary

In this chapter, we proposed an advanced model for customer revisit prediction. The SurvRev model

is the result of our commitment to creating a better predictive framework that works in a more realistic

environment. In summary, our SurvRev model successfully predicts revisit rates for next time horizon

by encoding each visit and managing personalized history. By applying survival analysis concepts, we

smoothly handled censored visits, that caused huge data imbalance to led our previous approach to

test in a downsampled prediction scheme. SurvRev is also free from data distribution inconsistency

according to the ratio of training and testing set length. By applying deep learning, SurvRev becomes

free from any parametric assumption and can predict customer revisit from an unknown distribution.

Our flexible deep learning model with quantized event rates makes us handle those difficulties common in

real-world prediction scenarios. By comparing with diverse event prediction approaches, SurvRev shows

its effectiveness on diverse prediction objectives. The last thing to mention is that SurvRev is a general

deep survival analysis model, which can be extended to any prediction task having partial observations

and sessions with multilevel sequences.
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Chapter 5. Conclusions and Future Directions

In this dissertation, we address the problem of predicting customer revisit using indoor mobility data. As

well as the revisit prediction framework, we present diverse findings related to the prediction task from

a broad perspective. Taken together, the work has pushed forward the frontier of predictive analytics

in the offline marketing domain, with academic contribution and business implications. We give an

overview of our contributions below.

5.1 Contributions

The future depends on some graduate student who is deeply

suspicious of everything I have said.

— Geoffrey Hinton

In this dissertation, we have presented an importance of revisit prediction in off-line retail analytics

with two different approaches:

• Customer revisit prediction: In Chapter 2, we formally define a customer revisit prediction

task and we introduce our efforts on real-world data collection. This work is the first revisit

prediction study on large-scale off-line customer mobility data and our frameworks can be easily

used in addition to seven stores.

– We extensively survey related works from marketing to data mining.

– We collect customer mobility from seven flagship stores which cover up to 2.5 years with 5.7

million visits.

– We introduce preprocessing steps to find meaningful customer mobility from raw Wi-Fi signals.

• Revisit prediction by feature engineering: In Chapter 3, we develop a fast-but-powerful

gradient boosting tree model powered by extensive feature engineering.

– We prove that in-store signals captured by customer mobility can be an important clue for

predicting their future behavior.

– We measure the predictive powers of the feature groups and find that store accessibility

features measured by weak Wi-Fi signals is very effective to predict the customer revisit.

– We also present the effect of changing data collection period and propose an efficient way of

estimating revisit predictability, by obtaining lower-bound of revisit prediction accuracy.

– We show that our model performs well on smaller datasets.

• Revisit prediction by deep learning: In Chapter 4, we develop a SurvRev model to predict

future revisit rate. The deep survival analysis model can fully use partial observations and enhance

the performance of our revisit prediction framework.

– To meet with real-world application setting, we update data splitting rule and relax data

sampling strategy.

– To train a model from partial observations, we design an event rate predictor to generate the

event rates of next k days and optimize through custom loss functions.

– To learn a hidden representation of each visit, we design an effective encoder with the combi-

nation of Bi-LSTM, CNN, attention networks with pretrained embeddings.
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– To show the effectiveness of the SurvRev model, we implement seven baseline approaches

covering customer arrival process and state-of-the-art deep survival models. We demonstrate

that SurvRev produces desired prediction results, by improving c-index by up to 12 %.

5.2 Impact and Achievements

The thesis has a potential impact on a wide range of domains where user data is collected and

solving predictive analytics are required for their success. Below, we highlight the impact of our work

on academia and industry.

• Academic recognition and media coverage:

– Our work on feature engineering in revisit prediction framework [52] was selected as one of the

best papers in ICDM 2018 and invited to the Knowledge and Information Systems journal [53].

– After the ICDM conference, I was invited to Korea Computer Congress (KCC) and Institute

for Basic Science to present our work for domestic researchers.

– This work was featured in Science Concert in 4th Industrial Revolution, KBS1 in Dec 20171.

– The concept of the revisit prediction with indoor mobility and its preliminary report using

n-gram features with two stores was presented in KCC 2016 [51].

– Thanks to this work, I was selected as the best presenter in the bi-annual colloquium in

2017 and I received the outstanding research award 2018 from KAIST Graduate School of

Knowledge and Service Engineering.

• Collaboration with research institutions:

– We received a research grant from Microsoft Research Asia (MSRA) for the first part of the

thesis, the title of the research project is ‘Prediction of customer revisit intention using indoor

movements in stores’.

– Starting with the above project, We continued our research collaboration with MSRA Social

Computing group. In fall 2018, I visited his group and developed pre-trained user embedding

models for user segmentation in Bing.

• Collaboration with companies:

– With the help of the preliminary submission of this work using two stores, I was able to get

five additional datasets from ZOYI corporation2, then completed the first part of the thesis

with seven flagship stores data.

– I led the acquisition of additional data for the extension of the research and achieve another

partnership with a start-up Loplat3. Currently, we are sharing the progress of our research,

and receiving data that meets our requirements. Received datasets are being used by our lab

members and would be a valuable resource for my future work.

• Offspring projects:

– With the feature engineering technique, I participated in the 2018 WSDM Cup and formed a

team online. Our team achieved 10th over 575 teams. The task was to predict customer churn

in an online streaming service.

– Two master students wrote their Master’s thesis using the dataset I have acquired.

1https://www.youtube.com/watch?v=aACf5iGeE8Y
2http://zoyi.co/ko
3https://loplat.com/

72

http://seondong.github.io/assets/awards/2018_KSC_Invited.jpeg
http://seondong.github.io/assets/awards/2017_KSE_Best_Presentation.jpeg
http://seondong.github.io/assets/awards/2018_KSE_Outstanding_Research.jpeg
https://github.com/seondong/WSDM_2018
https://www.youtube.com/watch?v=aACf5iGeE8Y
http://zoyi.co/ko
https://loplat.com/


– We released a benchmark revisit prediction dataset4 and we welcome any offspring project or

collaboration opportunity using this dataset.

5.3 Vision and Future Directions

Throughout this thesis, we develop algorithms for predicting using indoor mobility data, with a

focus on customer revisit prediction. We conclude by taking a step back to find opportunities to have a

practical impact on retail analytics and data mining.

Mining Inter-Store Mobility for Revisit Prediction

While indoor mobility data contain interesting micro-scale dynamics during the shopping process, it

is very difficult to capture the macro-scale dynamics of human beings. Using an points-of-interest (check-

in) datasets obtained from Loplat, we can find larger scale patterns that determine customer revisit

prediction. We will get the benefit by adopting recent techniques used in next location prediction

tasks using check-in data. We reckon that the multi-layer model with user and location contexts can

mimic revisit decision-making process. We anticipate that the model initiated from revisit prediction

task is more effective than the model generated from the next location prediction. The natural step to

extend our model is to capture diverse revisit intervals by considering different types of revisit targets.

As in the indoor mobility study, we will provide diverse insights to help practitioners in this field.

Ideally, we would like to visualize the characteristics of revisit-friendly-location and loyal customers by

understanding revisit mechanism and the willingness-to-revisit. Since we already have the dataset and

willing to collaborate, we spent some pages on Appendix C on this topic for future reference.

Deploying Our Algorithms to See Real-World Impact

In the long run, we would like to tune our algorithm to work in a stream environment and deploy

it to business in real time. We would like to work more closely with a company having a whole pipeline

from data acquisition to marketing service. If it happens, we can measure the direct impact of our

prediction algorithm and further give a benefit to merchants who are willing to retain customers, and

to customers who are willing to get more hospitality and discount. Our research can be of particular

interest to managers who operate stores and manage mobile applications with a data collection platform.

Learning Directly from Wi-Fi Signals

The strength and opportunity in deep learning come from the massive amount of data. I believe

deep learning have potentials to find more effective patterns out of the raw signals. As we observed,

Wi-Fi signals are collected several times a second and we can directly use these signals without having

any man-made preprocessing step such as signal-to-session conversion. If we are able to make use of it,

the final model can benefit from a much more continuous flow of customer motion pattern. The biggest

challenge is to find the best way to apply machine learning on tera-scale raw Wi-Fi signals, which is 567

GB in the case of single store O MD. Machine learning on this stream of Wi-Fi signals can be challenging

but rewarding.

4https://github.com/kaist-dmlab/revisit
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Chapter A. Benchmark Data

For fertilizing this field, we also released a real-world benchmark dataset for revisit prediction, which

will be the first publicly available datasets as far as I know. We believe that our benchmark datasets

can be used for diverse topics such as predicting stickiness1 of the customer, next area prediction, or

funnel analysis to increase an inflow rate. Here, we describe some data samples and statistics to become

familiar with our customer mobility data.

Released Data Example Tables A.1 show the first ten rows of each database in our benchmark

dataset. Table A.1a shows the description of each visit, each visit has its own ID and device ID with

corresponding visit date. The last column represents a sequence of corresponding Wi-Fi sessions for the

visit. Table A.1b shows the visit ID with its two labels, the first label corresponds to revisit interval

RVint(v) and the second label correspond to revisit intention RVbin(v). Table A.1c is a Wi-Fi session

data. It contains a core information to generate a trajectory for each visit. This data can be used by

connecting with train visits.csv.

Exploratory Data Analysis We append some exploratory data analysis to understand some statistics

of the dataset. Figure A.1 shows the histogram of customer revisit interval, which is available for revisited

instances. On the training and testing set, it follows a long-tail distribution. However, the distribution

is different on train-censored set. In Figure A.2, we can observe that customer revisit occurs by having

an interval with a multiple of 24 hours. Figure A.3 shows the number of weekly visitors and the average

revisit interval according to the visit date. We can find some unexpected patterns due to the longitudinal

data set up. Last, Figure A.4 describes the effect of increasing the training length.

1Stickiness is a marketing term to describe the average time per month at a site.
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Table A.1: Description of each database.

(a) The first ten rows of train visits.csv.

visit id wifi id date indices

v68 104 17242 328839;328841;328846;328864

v125 170 17190 107784;107786;. . . ;108296;108328;108341

v212 278 17338 519541;519599

v271 354 17179 59770;59772;. . . ;59897;59904;59913

v272 354 17217 227686;227706;. . . ;228576;228584;228585

v273 354 17224 255448;255450;255455

v335 414 17209 194049;194051;. . . ;194061;194064;194079

v369 464 17282 418485;418487;. . . ;418496;418498;418499

v370 464 17304 456398;456399;456400;456401

(b) The first ten rows of train labels.tsv.

visit id revisit interval revisit intention

v68 nan 0

v125 nan 0

v212 nan 0

v271 37.88 1

v272 6.8 1

v273 nan 0

v335 nan 0

v369 22.15 1

v370 nan 0

(c) The first ten rows of wifi sessions.csv.

index wifi id ts area dwell time

105 7183 1483239765 out 2574

106 7183 1483239767 1f 1051

107 7183 1483239767 in 2423

108 7183 1483239767 1f-c 923

109 7183 1483239776 1f-d 913

158 7183 1483240006 1f-e 703

162 3881 1483240015 out 2059

184 3881 1483240174 in 1886

185 3881 1483240174 1f-d 174
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(c) On train-censored set (vtc).

Figure A.1: Histograms of customer revisit interval (Store B, 180 days).
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(a) Revisit interval under 21 days.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Revisit Interval

0

25

50

75

100

125

150

175

200

Fr
eq

ue
nc

y

Average Revisit Interval (Small case)
Training data
Test data
Train-censored data

(b) Revisit interval under 3 days.

Figure A.2: Daily customer revisit cycle: most of the customers revisit the store having an interval with

a multiple of 24 hours (Store B, 180 days).
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(a) Number of weekly customers. Note that the number of train-censored data converges

to the number of training data as time goes.
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(b) Average revisit interval. It gradually decreases since we are handling longitudinal data.

If a customer visits at the end of the data collection period as well as having revisitation

before the time ends, his/her revisit interval should be very short.
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(c) Average revisit rate. The value gradually decreases for training and testing set. How-

ever, the value increases on train-censored set since the customer who visited early but

disappeared afterward, is unlikely to revisit during the test period.

Figure A.3: Statistics according to the visit date (Store B, 180 days).
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(b) Average revisit ratio.
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Figure A.4: Changes in statistics according to training length (Store B).

79



Chapter B. Preliminary Neural Network Approaches

This appendix introduces our preliminary neural network approach proceeded with the feature engi-

neering model. The model described in this chapter is not directly related to the final SurvRev model

described in Chapter 4.

Feature engineering has an inherent limitation that the model performance largely depends on the

feature set, and a lot of efforts has been made to design each feature manually. After having a solid

feature set, it was difficult to come up with a good idea, and the performance improvement by adding

additional features was marginal. Developing more features was similar to participating in endless

Kaggle competition without having a public leaderboard. And we knew that feature engineering cannot

be perfect since no one entirely knows the elements of a customer revisit.

We expected that model-based learning can be also possible with trajectory data, thus we applied

neural network models to directly capture the characteristics of the data causing future revisit. We

have tried Convolutional Neural Networks(CNN) and Recurrent Neural Networks(RNN). The CNN is to

capture unknown transition patterns from images generated from trajectories. The RNN is to capture

unknown sequential patterns from the semantic trajectories themselves. Notwithstanding its intuitions

and fancy approaches, we did not achieve higher performance with neural network models than the feature

engineering model, thus we omitted this section in our previous submissions. But it is worthwhile to

report our efforts and findings on the thesis, hence we introduce our approaches in the following chapters.

CNN Approach: Considering Trajectory as Image

A Convolutional Neural Network(CNN) is a deep feed-forward neural network which has widely

been applied to computer vision. In this thesis, we skip the basics of CNN and directly delve into our

application.

How to Generate an Image from Trajectory Data We encode each trajectory to image as an

input to CNN. Two options are available to encode a trajectory. The first approach is to generate

an image by physical coordinate [20]. The second approach is to generate a Gantt-chart like an image

using time and sensor information. In our study, we used the second approach since we want to focus on

hidden temporal patterns governing future revisit. For instance, if the pattern of staying in many areas is

important, a diagonal of a hidden layer should be highlighted and be learned through the neural network.

There is an additional reason that we select the second approach instead of the physical encoding: our

data. Indoor semantic trajectories comprise at most 30-40 different areas, which are the most elaborate

unit of customer location in the indoor data. Therefore, it concludes to a very small image (30-40

pixels) which does not get any benefit from convolution layers and pooling layers. One may argue that

the CNN model can capture the high-level physical areas such as our multi-level semantics utilized for

feature engineering. However, we conclude that a 6x6 size image is too small to apply any convolution

or pooling.

Figure B.1 describes an idea to generate an image from the trajectory and how CNN works. In

Figure B.1(b), the part enclosed by a black box is the image created from the trajectory given in

Figure B.1(a). The convolution layer, marked with a red box, compresses the characteristics of the data.
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We expect the CNN model can successfully provide informative high-level temporal patterns determines

customer revisit.

(a) An input trajectory. (b) A Gantt-chart drawn by the trajectory.

Figure B.1: The image generation process from a trajectory.

Image Generating Options We applied different options to generate images from trajectories. The

first option is a time normalization option. If the time normalization option is on, each image contains

a different time-scale than others. Second, we consider an option to fix the time length of the image. If

the time length is fixed to x seconds, we only consider first x seconds to generate an image. Third, we

generate an option to fix the output image width. Fourth, we applied five different options to decide the

order of each row. Default option is an ordering by the visit time as in Figure B.1(b). In this case, each

row does not guarantee sensor uniqueness. Fifth, we add an option to embed extra information at the

left or at the bottom side of the image. With this option, corresponding area names or area category

of each row can be explicitly added. Last, we enable an option to fix the size of the image. Figure B.2

describes an example image with some explanations. And the value of each option is described as follows:

Figure B.2: Description of the generated image.
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• Time normalization option: Binary

• Considered time length (second): 300, 600, 1800, 3600, 7200

• Image width: 30, 100

• Row ordering: Session start time (default), category, sensor name, occurrence frequency, dwell time

• Sensor uniqueness: Binary

• Area information (left side): Sensor category, sensor name

• Extra information (bottom side): Aggregated dwell time for each category

• Fix image size: Binary

Model Architecture The CNN model consists of two cycles of image abstraction. Layers wrapped in

parenthesis were used in the first version of the model, which are utilized optionally. After flattening the

output of second convolutions, embeddings of auxiliary inputs (time of visit, customer ID, visit frequency,

etc.) are concatenated. The architecture of our CNN model is as follows:

Conv − Conv −Drop︸ ︷︷ ︸
First cycle of abstraction

− Conv −Drop︸ ︷︷ ︸
Second cycle of abstraction

−Flatten− Concat︸ ︷︷ ︸
Add auxiliary inputs

−FC −Relu−Drop− FC − Softmax︸ ︷︷ ︸
Multi-layer perception to predict

Model Training We optimize our model by using a binary cross entropy loss with built-in stochastic

gradient descent optimizer and Adam optimizer in Keras[16]. And we report an accuracy to evaluate

the performance. Hyperparameters used in our experiment are listed here:

• Number of batch size: 128

• Number of epochs: 100

• Kernel size: 9

• Pool size: 2

• Padding size: 1

• Stride size: 2

• Number of kernel for convolution layer: 10

• Dropout probability: 0.05

• Number of neuron in FC layer: 100

Model Performance and Reason to Stop By the time we worked on the model, we had E SC

and E GN datasets. The highest prediction accuracy was about 0.58–0.59 depending on the parameter

set. The performance was similar to the feature engineering model at that point. The features of that

preliminary model were indoor-oriented without considering any store accessibility or sales information.

The CNN model does not consider those aspects either. But interpret patterns obtained from the hidden

layers were difficult and the obtained patterns were not clear since our model was not as predictive have as

the model developed from MNIST classification. Figure B.3 illustrates the feature visualization learned

from two convolution layers from our model. In Figure B.4, we note that the patterns observed from

the biased sample data with higher prediction accuracy (75 %), or that observed from MNIST dataset

(95 % accuracy) are much clearer than that shown in the above figure. Because of these limitations, we

stopped modeling with CNN at this level.
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(a) Features learned from the first

convolution layer.

(b) Features learned from the third

convolution layer.

Figure B.3: Features learned from our dataset with 58.4 % accuracy.

(a) Features learned from the third

convolution layer of 75 % accuracy

biased dataset.

(b) Features learned from the

third convolution layer of 95 %

accuracy MNIST dataset.

Figure B.4: Features learned from the other datasets with higher accuracy.

RNN Approach: Focusing Sequence of Areas

A recurrent neural network(RNN) is a model where sequentially connected cells represent temporal

behavior from time-series input. It has been widely used to model natural language processing or speech

recognition where previous data affects the current input state. Customer movement is also a type of

time series, so it fits well with the RNN structure. Although the revisit behavior happens after a long

period of time compared to each transition inside the store, representing customer revisit as an output

of the last hidden cell is reasonable in our understandings. So we applied widely-using unidirectional

RNN to feed semantic trajectory of each visit.

Model Architecture Our final model is a dynamic RNN model with LSTM cells. Dynamic RNN

allows for variable length, and LSTM is a special kind of RNN capable of learning long-term dependency.

To develop a structure, we utilized nn modules provided by PyTorch[91].

Input Features As an input, each cell requires data from each element of a semantic trajectory. For

each element, we used following features:

• fa: Dwell time in that area

83



• fb: Area index in a trajectory

• fc: Area ID

Below two features summarize the whole visit, and we additionally added those to the feature vector to

check if there is a performance gain.

• fd: Length of the whole trajectory

• fe: Total dwell time of the visit

Model Training Since the computation cost of RNN model is high, we sampled 100,000 visits from

O MD dataset for this experiment. From 100,000 visits, we randomly selected 70 % as a train set and

remaining 30 % as a test set. To report the meaningful accuracy, we downsampled each set to be balanced.

To minimize the binary cross entropy with logit loss, optimization is done by built-in Adam optimizer

with learning rate = 0.005.

• input size = 5

• hidden size = 300

• batch size = 72

• number of layers = 1

Performance Comparison We generate two RNN model with different feature sets. And compare

the performance with classical machine learning models. XGBoost classifier with parameters {max depth

= 4, and learning rate = 0.1} and RandomForest classifier with parameters {max depth = 4} are used

for comparison. Below are the description and corresponding accuracy of each model.

• LSTM models:

– Dynamic RNN model using input features {fa, fb, fc} → 0.5320

– Dynamic RNN model using input features {fa, fb, fc, fd, fe} → 0.5835

• Other classifiers using two features: {fd, fe}
– XGBoost Classifier → 0.6398

– Random forest Classifier → 0.6383

The performance of the RNN model is much lower than the accuracy of the XGBoost and the random

forest. Even if the architecture and hyperparameters of the RNN model were not completely optimized,

the performance of the RNN when using the same information was disappointing, so we proceeded to

this extent and wrapped up.

84



Chapter C. Application to Points-Of-Interest Check-In

Datasets

How important is the past check-in histories to predict the customer revisit to the store? In the next few

pages, I would like to present a brief agenda to understand the customer revisit using the characteristics

of inter-store mobility observed in the check-in dataset. Using inter-store mobility, we anticipate finding

behavioral patterns which lead to revisits. Those revisit-triggering patterns could be different from store

to store, and user to user. Extending the definition of revisit can be also possible. In some cases, it may

also be important to predict revisit to other chain stores of the same brand, or revisit to the same shopping

district, even if they are not coming back to the exact same store. To find the best model to fit the

multi-objective revisit function, we aim to devise a context embedding model to capture information from

high-dimensional points-of-interest (POI) data. Those approaches have been utilized in next location

prediction but have not been adopted in the revisit prediction task. Figure C.1 illustrates a difference

between revisit prediction using indoor mobility and revisit prediction using inter-store mobility.

Revisit?

(a) Revisit prediction task using indoor mobility: The objective is to

predict revisits to the store, using trajectories captured inside the store.

Revisit?

(b) Revisit prediction task using inter-store mobility: The objective

is to predict revisits to the store or related items to the store, using

trajectories captured between multiple store.

Figure C.1: Using inter-store mobility for revisit prediction.
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Available Check-in Datasets

Data Description

Two public location-based social network datasets can be used in this work, Foursquare [118] and

Gowalla [15]. In addition to those, we used one private check-in dataset collected in the Republic of

Korea. Throughout this paper, We call this dataset as Loplat-sample. The number of daily active users

and daily check-in amount is roughly a million, and the number of unique POI is 300,000. Currently,

we have a sample data for those who visited a multi-purpose convention center COEX at least once in

6 months, with at least 50 POIs. In addition to that, more recent Gowalla dataset[74] and Weeplace

dataset are also publicly available1, and ready to use.

Detailed statistics of the first three check-in dataset is listed on Table C.1.

Table C.1: Check-in data statistics.

Dataset # Users # Check-ins # Locations

Loplat-sample 25,038 5,378,784 229,645

Foursquare 266,909 33,278,683 3,680,126

Gowalla 216,734 12,846,151 1,421,262

Exploratory Data Analysis

We explored Loplat-sample dataset to identify some revisit trends. As explained in Section 2.4, the

revisit interval RVdays(v) = r represents the interval between two consecutive visits to the same place,

and the revisit intention RVbin(v) is an indicator function of revisit interval. First, we will focus on revisit

interval to interpret the periodicity of check-in behavior. For each check-in logs, four types of revisit in-

tervals are calculated. rp, rc, rb, rd denotes a time taken to revisit to the exact same place, same category,

same brand, and same administrative district, respectively. Table C.2 describes an example of rb.

Table C.2: Examples of revisit intervals: rb for top-3 coffee franchises.

From/To # logs # users # franchises r̄b

Cafe S 95,961 18,329 1,184 11 days 11:51:48

Cafe T 23,334 5,979 695 16 days 13:17:56

Cafe E 18,703 5,123 1,349 17 days 07:30:35

Figure C.2 shows an example of revisit intervals with/without periodical patterns. In Figure C.2a,

A revisit interval distribution of cafe S follows a power-law with a weekly periodical pattern. Meanwhile,

In Figure C.2b a revisit interval distribution of entire coffee franchise follows the power-law, but no

periodical pattern is observed.

1http://www.yongliu.org/datasets/
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(a) Histogram of rb, where b stands for the fran-

chise cafe brand S. rb follows a power-law distribu-

tion with weekly periodical pattern.

(b) Histogram of rc, where c stands for the cate-

gory coffee shop. rc follows a power-law distribu-

tion, but weekly periodical pattern is not observed.

Figure C.2: The existence of periodical patterns.
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