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ABSTRACT

Given a graph, with a source node that needs to maximize its influence over a specific target node, a set of

nodes need to be determined that will enable information flow from the source to the target node. By solving this

problem, we can enable a user to receive more attention from a specific target user by forming useful connections

between the two. Current friend recommendation algorithms focus on suggesting nodes that are similar to the

user, but these algorithms are not designed to tackle the maximum influence issue. Based on the observation that

information propagation on online social networks is enabled by the sharing activity, we define the influence of

a source node over target as a variation of Katz centrality. In addition, we model the reluctance, to account for

awkwardness between two users. With these measures, we propose k-node suggestion problem. However, the

optimization problem of recommending a node set that maximizes influence is NP-hard. Therefore, in this paper,

we suggest an algorithm to find a node set sequentially. Next, we model reluctance between two nodes, which is

inversely related to node similarity. Reluctance is based on the intuition that people not related with the user, might

not accept the user’s online connection request. By considering reluctance, we could identify the nodes that have

a higher probability of refusing the connection request. We address this problem by proposing an Incremental

Katz Approximation (IKA) algorithm that is designed to search the top-k nodes with high accuracy and has the

ability to run on a large graph. The IKA algorithm can handle large graphs by approximating influence measure

using Monte-Carlo simulation. This algorithm updates information diffusion incrementally to find the node that

can maximize influence. We discuss the complexity of our algorithm and the evaluation results demonstrate the

performance and scalability of our algorithm. We also report interesting behavior of the sequential recommenda-

tion result. In summary, our algorithm is effectively recommend friends such that they can improve influence of

the source user on the target user.

Keywords - Network with Target; Friend Recommendation; Maximizing influence; Information Propagation;

Incremental Algorithm for Katz Centrality;

i



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1. Introduction 1

Chapter 2. Related Work 4
2.1 Friend Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Link Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Approximation and Incremental Algorithm for Centrality . . . . . . . . . . 5

2.4 Analysis of Evolving Social Network . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 3. Problem Definition 6
3.1 Information Propagation Model . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 K-node Suggestion Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 4. Proposed Algorithm 11
4.1 Non-Incremental Exact Algorithm . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 Naı̈ve Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.2 Two-Hop Neighbor Greedy Algorithm . . . . . . . . . . . . . . . . 12

4.1.3 Candidate Reduction in Greedy Algorithm . . . . . . . . . . . . . . 12

4.2 Incremental Approximation Algorithm . . . . . . . . . . . . . . . . . . . . 12

4.2.1 Influence Approximation . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.2 Incremental Update . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Discussion on Algorithm Complexity . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 5. Experiment 19
5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.1 Time Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.3 Performance Comparison and Interpretation . . . . . . . . . . . . . 22

ii



Chapter 6. Conclusion and Future Directions 27
6.1 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

References 29

Summary (in Korean) 32

– iii –



List of Tables

3.1 Symbols for the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Processing result of toy example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.1 Synthetic graph description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iv



List of Figures

1.1 Friend recommendation in online social network . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Information propagation in online social network . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 K-node suggestion problem on toy graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.1 Time comparison according to the number of nodes . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Time comparison according to network density . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Relative error between exact and approximated influence . . . . . . . . . . . . . . . . . . . . . . 22

5.4 Variance of approximated influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.5 Friend recommendation result (ns, nt = not connected, ns = leaf, nt = center) . . . . . . . . . . . 24

5.6 Friend recommendation result (ns, nt = not connected, ns = leaf, nt = leaf) . . . . . . . . . . . . 25

5.7 Friend recommendation result (ns, nt = connected, ns = leaf, nt = center) . . . . . . . . . . . . . 26

5.8 Friend recommendation result (ns, nt = connected, ns = leaf, nt = leaf) . . . . . . . . . . . . . . 26

v



Chapter 1. Introduction

People use social networking services such as Facebook, Twitter, and Instagram extensively. Almost a billion

users are active on such applications, on a daily basis. Several of these users send friend requests to other users.

One of the most important features of any social networking service is the ability to suggest friends[37]. Each

application uses its own algorithm to suggest probable friends to a user[12]. For example, an application might

suggest people belonging to a group recently joined by the user, or people related to the user’s current job or

school.

Although these recommendations help users form connections within their groups, and suggest people that

the users probably know, the algorithm does not recommend people the users want to connect with, or groups they

want to join. For example, a graduate student specializing in the subject area of data mining may want to connect

with a famous professor in the same field. The student might send a friend request to the professor directly, but

there is a high probability that the professor might not respond because he/she might not have heard of the student.

What if there is an application that enables the user to select a target user, and then suggests friends accordingly,

so that the user is noticed by the target? The student can then successfully build a connection with the professor.

Based on the various studies and research on how people create social ties, maximizing exposure to a specific

target can be one way of enabling people to create social ties. In addition to the online social network, the concept

of maximizing exposure to the specific target user can be extended to targeting particular advertisements to a user.

In this paper, we propose a friend recommendation algorithm for scenarios where the source node wants

to connect with a specific target node. Based on past observations, we know that a post on a social network

can propagate through all possible paths between two vertices. Therefore, we intend to suggest friends who can

facilitate information flow from the source to the target. For example, if a source node and a target node are

not directly connected, suggesting intermediate nodes can help facilitate communication between the two nodes.

Additionally, by suggesting the target’s neighboring nodes to the source node, we can increase the possibility of

a direct connection. Figure 1.1 shows the probable changes to friend suggestions when a source picks a specific

target.

Before tackling the recommendation problem, we modeled the process of information diffusion through

social network. We considered common social network scenarios such as when an article is shared with the direct

neighbor of an author, and propagates over the corresponding two-hop neighbor if the author’s direct neighbor

shares or comments on the post. In our work, we refer to all conveying actions as ”sharing” and define the sharing

probability as a constant. We also specified a setting that each user in the network has a homogeneous behavior of

posting. In this setting, the number of posts that a user can receive can be determined solely by their topological

location in the network. Among the posts that the target node receives, there might be some posts that may have

originated from the source node, which we defined as the source node’s influence over the target node.

Next, we modeled reluctance between two nodes, which is inversely related to node similarity. Reluctance is

based on the intuition that people not related with the user, might not accept the user’s online connection request.

– 1 –



(a) Current friend recommendation algorithm suggests node
from each cluster which is not connected with the user

(b) When the user has a target node 2 to maximize its in-
fluence, first we can suggest the node 1 which shorten the
distance to the target. And then we enables to connect direct
with the target, finally add the node 3 which boosts informa-
tion transfer

Figure 1.1: Friend recommendation in online social network

By considering reluctance, we could identify the nodes that have a higher probability of refusing the connection

request.

We define this scenario as the k-node suggestion problem in online social networks. This problem is an

optimization problem, where an existing source node wants to maximize its exposure to a certain target node.

By drawing a graph using the source node and target node as inputs, we recommend k-nodes to the source user,

where k is unknown. The main objective was to maximize influence gain by having k new edges and each

recommendation should meet the reluctance threshold. The expected result is a set of k users for recommendation.

However, we found that determining a k-node that maximizes the source node’s influence is intractable. First,

the benefit of having a new friend can vary depending on the sequence of suggestions, and all
(
n
k

)
possible cases

need to be calculated. Therefore, k-nodes should be found one-by-one using a greedy algorithm. However, this

involves complex calculations.

First, the influence score needs to be represented as a division of two Katz centralities. This concept will

be discussed further in the Section 3.3 of this paper. To calculate a Katz centrality precisely, matrix inversion

needs to be performed, which requires extensive computation. Furthermore, a node that maximizes the influence

needs to be found, which requires calculating the Katz centrality for a new graph by changing the additional edge.

This process is completed when there are no beneficial nodes left. In addition, no previous research regarding the

calculation of Katz centrality on a streaming graph could be found.

To solve this problem, we proposed our algorithm—Incremental Katz Approximation (IKA). In this algo-

rithm, we first decreased the candidate set, and then applied Monte-Carlo simulation to approximate the Katz

centrality. The influence score was calculated by using the results of the two simulations. Using the simulation

results, we could update the random diffusion and calculate the influence by taking into account the effect of a

new edge.
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We calculated the algorithm complexity, and supported our calculations experimentally by measuring the per-

formance of the proposed algorithm against non-incremental greedy algorithm using various sizes and structures

of synthetic network and real-world network. Additionally, we found that even short random diffusions are suffi-

cient to find the top-k node recommendations. Based on our results, we concluded that our algorithm is superior

compared to topology-based recommendation algorithms that use various node-to-node similarity measures. Fi-

nally, we analyzed the characteristics of a recommendation set by changing the topological location of the source

and target node.

We summarize our contribution as follows:

• The problem: We undertake a friend recommendation problem in online social networks when a user wants

to maximize his/her influence over a specific target user.

• Design a new measure: We define an influence measure and analyze the effect of having new connection

• Performance: We design the IKA algorithm, which incrementally approximates Katz centralities and proves

its performance over topology-based recommendation algorithms.

• Discovery: We experiment with diverse networks and interpret the characteristics of recommended nodes.

The rest of the paper is organized as follows.

• In Chapter 2, we examine related works about friend recommendation and incremental algorithms.

• In Chapter 3, we introduce our social network model and formulate k-node suggestion problem to derive

the best recommendation result.

• In Chapter 4, we introduce greedy algorithms for sequential node suggestion.

– In the first section, we present an exact algorithm and two variations that focus on candidate reduction.

– In the next section, we present our IKA algorithm using Monte-Carlo simulation.

– In the last section, we discuss the complexity of both algorithms.

• In Chapter 5, we describe the experiments conducted using synthetic and real networks.

• In Chapter 6, we conclude this thesis.

– 3 –



Chapter 2. Related Work

In this paper, we propose a personalized friend recommendation problem when there is a specific target for

user. So in this section, we provide related works on various research topics such as friend recommendation, link

prediction, approximation and incremental algorithm for centrality, and analysis of evolving social network.

2.1. Friend Recommendation

Friend recommendation is one of the biggest research field in social networks [2]. By recommending friend,

users can make new connections and expand their ego network [30]. There are mainly two friend recommendation

approaches; topology-based approach and content-based approach. Topology-based approach exploits properties

from the network structure and calculates node-to-node similarities. Recommendation node will be the node with

the highest similarity. Jaccard similarity [39] and SimRank [17] are well-known node-to-node similarity measures.

Zhao et al [48] proposed P-Rank, which is the general version of structural similarity. And Leicht et al [23]

proposed a similarity measure viewed as a weighted count of number of paths having possible length between

two vertices. Content-based approach tries to recommend item similar to those a given user has liked before.

Collaborative filtering is widely used in content-based approach. Comprehensive knowledge of content-based

approach and collaborative filtering is covered in [29, 43]. In addition to that, Liu et al suggest hybrid method [27]

which refined content-based similarity [32] and topology-based approach [41], and combined them together to get

better recommendation from their Twitter dataset. Different types of algorithms are used in different contexts. Lo

et al [28] developed topology-based model to estimate relationship strength by exploiting real message interaction

and Armentano et al [3] developed an unsupervised model in twitter environment to identify users who can be

considered as good information sources. In this paper, we apply a topology-based method where every user has

homogeneous posting behavior. And we consider the general social network environment where people share

their neighbor’s article to his/her own neighbor. Similar to [23], we assume that the target user can get information

through all different paths between source and target. And we define the influence of source node as the proportion

of source node’s post covered in target node’s newsfeed. Final recommendation is done by selecting a node one

at a time, the node which maximizes the source nodes influence over the target.

2.2. Link Prediction

Link prediction problem is considered similarly as friend recommendation problem. Main goal of this prob-

lem is to predict implicit interactions, based on observed links. Nowell and Kleinberg [25] formalized the question

of inferring which new interaction would occur in the near future, given network snapshot. And they uses different

predictors such as graph distance, common neighbors, Jaccard [39], SimRank [17], Adamic-Adar [1], Katz [20].

From their experiment, performance of Adamic-Adar [1] is overall satisfactory compared to other predictors. This
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implies that we can represent the connecting behavior in real network by Adamic-Adar coefficient. Leskovec et

al [24] predicted the sign of link in online social networks. In our paper, we designed reluctance between user

and recommended node as a negative exponential to Adamic-Adar coefficient. Subsequently, maximum influence

with minimum reluctance node can be suggested to the user.

2.3. Approximation and Incremental Algorithm for Centrality

By finding the node with maximum influence, we need to calculate the influence in accordance with adding

new edge to the original graph. Approximation and incremental algorithm might increase computation speed

significantly. Kas [19] dealt with incremental algorithm on closeness, betweenness, and k-centrality. In order to

compute those centralities incrementally, the only information needed is the all-pair shortest path. And newly gen-

erated edge will affect the nodes whose shortest path lies on. And Okamoto et al [35] combined existing method

on calculating exact value and approximate value of close centrality and efficiently find top-k vertices. However,

influence measure in our paper is modeled as Katz centrality. In order to calculate the Katz centrality, we need an

information of all walks between two nodes. Even a single edge enables to affect a large portion of the length of

walk, exact calculation through partial update is almost impossible. Also, method in [35] cannot be adapted to

Katz centrality since it is a variant of eigenvector centrality. So the calculation requires computing all centrality

values for all vertices unavoidably, even if we only need top-k values. However, Bahmani et al [4] analyzed the

efficiency of Monte-Carlo methods for incremental computation of PageRank [36], personalized PageRank [18]

on evolving social networks. This work is meaningful for us since PageRank is a variant of eigenvector central-

ity. From their work, we incarnated to approximate Katz centrality by Monte-Carlo simulation and incrementally

updating the influence value by expanding random diffusion.

2.4. Analysis of Evolving Social Network

Social scientists has discussed about how individuals create and break off the relationship and form social

networks [22]. For example, homophily is well-known tendency that similar individuals interact each other [31].

However, people cannot have much information about the other part of global social network. So they tend to

make a relation from their surroundings. For example, individual makes new connection with someone who are

friend of friends and this is known as triadic closure [42], and form locally dense cluster [5]. However, there is

also a theory of structural hole [21] that individuals who seek new information or resources may benefit from

across to bridge, which also emphasizes the strength of weak tie [9]. In our networks, individual forms a social

connection by increasing its influence over target. If the distance between source node and target node is long,

then the user makes connections to series of nodes which decreases the distance between two vertices, this action

can be interpreted as having benefit from its weak ties.

– 5 –



Chapter 3. Problem Definition

In this chapter, we introduce our social network model and formulate the k-node suggestion problem to derive

the best recommendation result. In Section 3.1, we introduce our information propagation model in online social

network. And we modeled influence and reluctance between two vertices. In Section 3.2, we introduce k-node

suggestion problem. Main goal of this problem is to find the set of nodes which maximize exposure to specific

target node.

3.1. Information Propagation Model

In this section, we model the process of information propagation through a social network. We focus on the

online social network environment where each individual has its own feed which displays the recent articles of

its neighbor. As shown in Figure 3.1(a), that article uploaded by source node appears to its neighboring node’s

feed without any action. Second, this article enables to propagate on friend of friend, and this process is done by

”sharing” actitities such as share and reply to someone’s post. Figure 3.1(b) describes that source node’s article

is transferred to its two-hop neighbor due to the sharing activity by intermediate node. In our model, we fix the

sharing probability as a constant. In online-social network, people can receive an article several times due to

multiple sharing by its neighbor. For example, in Figure 3.1(c), target node will receive same article twice if there

are two intermediate nodes shared the article. For easier explanation, in Figure 3.1(c) we ignore the case that

source node received its own article again by sharing activity. To put it simply, the article by source node can be

transferred through any walks between source node and target node. Figure 3.1(d) shows that every node acts as a

source node and intermediary node at the same time. In this example, target node’s feed is filled with the post that

four different individual uploaded. And here we are interested in the ratio of source node’s post on target node’s

feed. We denote that ratio as influence of source node over target.

Proposition 3.1 Assume that the only individual who upload its post is source node ns. Let S is the set of all

walks from ns to target node nt, and lengthw is a length of each walk w. By having fixed sharing probability ps,

then the expected number of article that nt received is:

rst =
∑

w∈S
plengthw−1
s (3.1)

Definition 3.2 (Influence) Let rst is number of article that nt received from the network with single uploading

node ns. By considering that every node has uploading behavior, then the probability of ns’s article covered in

nt’s feed is:

Ist =
rst∑
s rst

(3.2)
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Source Target

(a) Direct neighbor

Share

Source

Target

(b) Propagate by sharing

ShareSource Target

Share

(c) Message can be duplicated

Source Target

(d) Every node acts as a source node

Figure 3.1: Information propagation in online social network

Remark Consider all walks in graph G. If N(dist = i) is the number of walks which length is i from nt. Then

influence can be rewritten as

Ist =
rst∑
s rst

=
rst∑

iN(dist = i) ∗ pi−1
(3.3)

Corollary 3.3 From the network where every node posts an article, Total number of article that nt received can

be represented as Katz centrality of node nt.

Proof Total number of article that nt received throughout the network is represented as
∑
s rst. In remark, we

introduce that this can be represented as the weighted summation according to the distance. Let A be the adjacency

matrix of a network, then Katz centrality for node t is

CKatz(t) =

∞∑
k=1

n∑
s=1

αk(Ak)st (3.4)

By considering attenuation factor α as a sharing probability p,
∑
s rst =

CKatz(t)

α
. Denominator α appears since

we assume that direct neighbor received an article without any action. In order to guarantee the convergence,

attenuation factor α has to be smaller than the largest eigenvalue of the adjacency matrix.
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Remark In a similar way, the number of source node’s article that nt received can be represented as Personalized

Katz centrality of node nt. In the case of single uploader ns, the number of article by that nt received throughout

the network is represented as rst. And we can represent it as

rst =
CPKatz(t)

α
=

∞∑
k=1

αk−1(Ak)st (3.5)

Katz centrality is represented as matrix inversion.

−→
C katz = ((I − αAT )−1 − I)

−→
I (3.6)

We are able to compute the Katz centrality numerically by power method. We can get the Katz centrality for node

i by this equation.

xi = α
∑

j
Aijxj + β (3.7)

whereA is the adjacency matrix of graph G with eigenvalue λ. In order to guarantee convergence, α <
1

λmax
, and

parameter β control the initial centrality.
−→
β = 1 for Katz centrality and

−→
β = 1s for Personalized Katz centrality.

Remark We can represent influence Ist by using Katz centrality.

Ist =
CPKatz(t)

CKatz(t)
(3.8)

We observed that influence of source node over target can be represented using Katz centrality. However,

modeling influence by Katz centrality also have some weaknesses. First, Katz centrality is eigenvector centrality

so we need to compute for whole network to get the value for specific node. Second, incremental algorithm to

calculate Katz centrality is not known.

Then, we modeled the reluctance between two individuals. The concept of reluctance is awkwardness be-

tween two nodes. When a system suggests a new node to source node, source node might not request a friend to

suggested node since they do not know each other. Even though he sends a request to suggested node, it might not

accept the friend request from source node. To sum up this idea, we define reluctance as negative exponentially

proportional to Adamic-Adar similarity [1].

Definition 3.4 (Reluctance) Let ρij is the reluctance between the two nodes ni and nj . Then ρij is defined as:

ρij = e−sim(i,j) (3.9)

where

sim(i, j) =
∑

n∈Γ(i)∩Γ(j)

1

log|Γ(n)|
(3.10)

Γ(n) refers a set of neighbors of node n and |Γ(n)| is the size of Γ(n). And the range of Adamic-Adar similarity

is between 0 to∞.
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3.2. K-node Suggestion Problem

In this thesis, we consider the network with specific target where source node ns wants to maximize its

influence over a specific target nt. To solve this problem, we suggest relevant friend recommendation to increase

the information flow from ns to nt. More specifically, we want our suggestion will control the portion of source

node’s article among articles that target received. However, increasing influence by recommending nodes is not a

trivial problem. Intuitively, we can think that Ist increases by having another connections from ns to intermediate

node nt. Although the number of routes between ns to nt increases, the number of routes from other nodes to

nt also increases. That makes our problem non-trivial. And yet there is another issue. If we only consider the

maximization of influence, then the friend recommendation algorithm might suggest nt directly or only suggests

the nodes which is topologically located next to nt. However, those nodes are not related with ns. So we have

to consider that the suggestions are at least relevant to source node, which means that we need to consider the

reluctance between ns and our suggestion. In this section, we formalize a node suggestion problem to maximize

∆Ist. The basic formulation of the k-node suggestion problem can be represented as follows:

maximize Ist(G
′)− Ist(G)

subject to ρsi < 1 i = 1, ..., k

(3.11)

Symbols Description

G Undirected Network, G = (V,E)

G′ Network after adding edges, G′ = (V,E + ES)

S Ordered Set of k suggested nodes, S = {n1, n2, ..., nk}

ES Ordered Set of new connections by S, ES = {e(ns, n1), e(ns, n2), ..., e(ns, nk)}

Ist(G) Influence of ns over nt in graph G

ρsi Reluctance between ns and ni in graph G

Table 3.1: Symbols for the problem

Here we want to maximize the influence by having k new connections. And the constraint is a reluctance

which means we need to guarantee that the source node and a suggested node need to have at least single mutual

friend. We consider the case that the node is recommended sequentially.

We explain our problem with toy graph in Figure 3.2. We have undirected graph with |V | = 6, |E| = 5.

ns = n1, and nt = n4 that n1 wants to maximize its influence. Initially, n4 can get n1’s article by the unique

path, shared by n3 and n2 consecutively. For source node n1, there exists a set of four nodes S = {n2, n4, n5, n6}

which can be a candidate of future connection. In order to give the best recommendation, we can calculate our

objective function for those candidate nodes. Here we consider the case that k = 2, with sharing probability

ps = 0.5. The calculation result is given in Table 3.2. In this example, first recommended node becomes n2 to

source node n1. And the second recommendation is direct connection with target n4. After connecting those two
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nodes, there aren’t any beneficial node left, so S = {n2, n4}. However, calculating value for all possible edges is

computationally expensive. Hence we propose heuristic algorithm to get k suggested friends.

n1 n2

n3

n4

n5

n6

(a) Source node(n1) and Target node(n4)

n1 n2

n3

n4

n5

n6

(b) Candidate nodes for source node(n2, n4, n5, n6)

n1 n2

n3

n4

n5

n6

(c) First recommendation : n2

n1 n2

n3

n4

n5

n6

(d) Second recommendation : n4

Figure 3.2: K-node suggestion problem on toy graph

New edge ∆Ist r Selected

e(n1, n2) 0.0658 0.0361 Yes

e(n1, n4) 0.3732 1 No

e(n1, n5) 0.0071 1 No

e(n1, n6) 0.0071 1 No

e(n1, n4) 0.3078 0.2391 Yes

e(n1, n5) 0.0062 0.2391 No

e(n1, n6) 0.0062 0.2391 No

e(n1, n4) −0.0122 0.2391 No

e(n1, n5) −0.0122 0.2391 No

Table 3.2: Processing result of toy example

– 10 –



Chapter 4. Proposed Algorithm

In this chapter, we discuss the algorithms designed for searching nodes which maximize source node’s in-

fluence over target node. Algorithm presented in this paper follows a greedy approach which selects the nodes

sequentially. In Section 4.1 we describe three greedy algorithms. Main difference between three algorithms is the

candidate set size when searching the best recommendation at each step. Algorithm 3 limits the candidate set as

two-hop neighbor from the source node. In algorithm 4, we gradually cut off the candidate nodes which decreases

influence by having new connection.

In Section 4.2, we propose Incremental Katz Approximation(IKA). IKA applies Monte-Carlo simulation to

approximate influence value, and incrementally update by extending the random diffusion. In the stage of finding

each recommendation, IKA save the status of random diffusion and only calculate the part that is affected by new

connection. We then discuss about the complexity of each algorithm in Section 4.3.

4.1. Non-Incremental Exact Algorithm

4.1.1 Naı̈ve Greedy Algorithm

Our greedy approach suggests the node sequentially which maximizes the influence each step. The algorithm

halts if there does not exist any node which increases the influence. In order to find k suggestion sequentially,

we need to repeat computing influence value for all unconnected candidate nodes k times. Algorithm 1 is the

pseudo-code of greedy algorithm. Here, VC represents candidate set, and NG[ns] represents close neighborhood

of ns.

Algorithm 1 GREEDY FINDER

Input: Graph G = (V,E), source node ns, target node nt
Output: Set of nodes S = {ni1 , ni2 , ..., nik}

1: Calculate Ist
2: S = {}
3: VC = V −NG[ns] // Candidate set
4: while ∆Ist > 0 do
5: nm = argmax

nc∈VC ,ρsc<1
∆Ist // Finding the node which maximizes influence

6: if ∆Ist > 0 then
7: G = G+ e(ns, nc)

8: S = S + nc

9: Update VC // Remove nc from the candidate set
10: end if
11: end while
12: return S
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Calculation procedure of influence is explained in Algorithm 2. For the purpose of calculating Katz cen-

trality, we used NetworkX[14] package in Python. It is numerically calculated by power method iteration xi =

α
∑
j

Aijxj + β to find the eigenvector corresponding to the largest eigenvalue of the adjacency matrix of G. And

the attenuation factor α is strictly less than 1/λmax to guarantee the convergence of Katz centrality value. And β

is a weight attributed to the immediate neighborhood so that we can adjust how much each node will affect Katz

centrality value. By setting β = 1, we are able to get the total number of post that target node receive from whole

network. And by setting only sth element 1 and otherwise 0, we can get the personalized Katz centrality of which

denotes the number of post that target received through all paths, consider that only source node put a post online.

Algorithm 2 CALCULATE INFLUENCE

Input: Graph G = (V,E), source node ns, target node nt
Output: Ist

1: Find λmax of G

2: Calculate Katz Centrality ~CKatz of G (α = 0.9/λmax, β = 1)

3: Calculate Personalized Katz Centrality ~CPKatz of G (α = 0.9/λmax, βs = 1)

4: Ist = CPKatz(t)/CKatz(t) // (3.8)

5: return Ist

4.1.2 Two-Hop Neighbor Greedy Algorithm

As experiment network sizes becomes larger, the candidate size also grows proportional to the size of the

network. Therefore, we need to shrink the size of candidate set in order to lessen the total running time of the

algorithm. One possible solution is to restrict the candidate set as two-hop neighbor of source node. From the

point that the node set which has a reluctance value smaller than 1 is exactly same as the two-hop neighbor of

the source node, because Adamic-Adar value is nonzero when two vertices has at least single mutual neighbor.

This also matches with the theory that individual makes a connection with their friend of friend known as triadic

closure. This reduces the size of the searching set from O(n) to O(d2), which gives huge benefit dealing with a

sparse graph. Algorithm 3 describes the pseudo-code of this algorithm. Here, notation NG2[ns] represents the set

of two-hop neighbor of ns.

4.1.3 Candidate Reduction in Greedy Algorithm

We applied further candidate reduction after each recommendation, by removing candidate nodes that do not

increase ∆Ist. Since we only require single best node on each recommendation, there are only little possibility

that those garbage candidates are selected at the next recommendation among all candidates. Once the node is

removed from the candidate set, it does not appear until it is newly selected as the two-hop neighbor.

4.2. Incremental Approximation Algorithm

In this section, we will explain our proposed algorithm Incremental Katz Approximation(IKA). First, we

applied Monte-Carlo simulation for approximating influence value in large network. Then we show our way of

– 12 –



Algorithm 3 TWO-HOP NEIGHBOR GREEDY FINDER

Input: Graph G = (V,E), source node ns, target node nt
Output: Set of nodes S = {ni1 , ni2 , ..., nik}

1: Calculate Ist
2: S = {}
3: VC = NG

2[ns]−NG[ns] // Candidate set is two-hop neighbor

4: while ∆Ist > 0 do
5: nm = argmax

nc

∆Ist

6: if ∆Ist > 0 then
7: G = G+ e(ns, nc)

8: S = S + nc

9: Update VC // Update VC by considering two-hop neighbor of nc
10: end if
11: end while
12: return S

Algorithm 4 CANDIDATE REDUCTION ON TWO-HOP NEIGHBOR GREEDY FINDER

Input: Graph G = (V,E), source node ns, target node nt
Output: Set of nodes S = {ni1 , ni2 , ..., nik}

1: Calculate Ist
2: S = {}
3: VR = {}
4: VC = NG

2[ns]−NG[ns]

5: while ∆Ist > 0 do
6: VR = {nc|∆Ist < 0}
7: nm = argmax

nc

∆Ist

8: if ∆Ist > 0 then
9: G = G+ e(ns, nc)

10: S = S + nc

11: VC = VC − VR // Remove nonbeneficial nodes from the candidate set

12: Update VC // Formerly removed nodes in NG(nc) can be added to the candidate set

13: end if
14: end while
15: return S
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updating this value when additional edge is added to the graph. Using this technique, we can incrementally update

the influence by having new recommendation.

4.2.1 Influence Approximation

In order to approximate information transfer ratio, we do two separate Monte-Carlo simulation. We found

the possibility of Monte-Carlo simulation on Katz centrality from the paper which analyzes the efficiency of

approximating personalized PageRank on evolving graph[4]. First we initialize R1 articles starting from each

node of the network with size n. Unlike PageRank, articles can spread or disappear to multiple nodes in our

settings. At the first iteration each article diffuses over its direct neighbors, since an article is directly transmitted to

neighbor’s web feed in online social network. From the second iteration, each article spreads over its neighboring

node if a sharing condition is met. An article from any node can totally disappear if everyone who got the post

does not share at all. Average number of article that target received can be approximated by counting the articles

that pass through target node divided by initial number of articles in the whole network. This simulation result

approximates Katz centrality we discussed before.

Given target node nt, Xt is the total number of times that random walk passes through nt. If R1 random

walk starts at each node, we approximate the Katz centrality or information transfer rate from all nodes to target

with:

∑
s
r̃st = Xt/nR1 (4.1)

Then, we approximate the average number of source node’s article that target node received. This is done by

initializing articles solely from the source node. Unlike the previous case, a sufficiently large number of articles

should be initialized from the source node to approximate it. This becomes the Monte-Carlo way of getting

personalized Katz centrality. Assume for target node nt, Yt is the total number of times that random walk visits

target node. IfR2 random walks starts from source node, we can approximate rst(Proposition 3.1) or personalized

Katz centrality with:

r̃st = Yt/R2 (4.2)

Our measure for recommendation, influence of source node over target, Ist can be approximated by using (4.1)

and (4.2) .

Ist =
rst∑
s rst

≈ nYtR1

XtR2
(4.3)

In order to regenerate the same result, pseudo code for approximating Katz centrality is described in Algo-

rithm 5. Approximating personalized Katz centrality can be done by initializing articles on single source node.

4.2.2 Incremental Update

In order to recommend a node, we have to recalculate influence value when graph has an additional edge.

And huge amount of calculation overlap occurs if we recalculate Katz centrality from the beginning. Here we

refer the previous random diffusion result, and only calculate the extra part that is affected by a new edge. Having
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Algorithm 5 MONTE-CARLO APPROXIMATION OF KATZ CENTRALITY

Input: G = (V,E), Source node ns, Target node nt, Sharing probability ps, Number of article initialized for

each node : R, Diffusion length nIter

Output: rst, Diffusion information (Count(ni), j) : Number of article located in each node at each step j

1: Katz : Initialize R articles on each node

2: Personalized Katz : Initialize R articles on ns
3: for node ni in V do
4: for each article in node ni do
5: Diffuse to its neighbor NG(ni)

6: end for
7: end for
8: for Each iteration j from 2 to nIter do
9: for node ni in V do

10: for each article in node ni do
11: if r ∼ U [0, 1] < ps then
12: Diffuse to its neighbor NG(ni) // Count(NG(ni)) + 1, for next iteration

13: end if
14: end for
15: end for
16: end for
17: Sum the total number of diffusion arrive in target node rt.

18: return CKatz(t) ≈ rt/R, (Count(ni), j) // We also track how many articles are in ni at iteration j
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another edge means that information from source node can flow to new neighbors if sharing condition is met. So

at each simulation step, we check an article located at the end of new edge. If sharing condition is met, another

diffusion is starting from those two endpoints. Detailed algorithm is described in Algorithm 6. First part of the

algorithm is initializing the new diffusion if there exists articles available on two nodes affected by new edge.

Second part is generating additional transmission for articles which arrives at two nodes at each iteration. And the

last part is continuing the random diffusion initiated by the effect of the new edge.

Algorithm 6 UPDATE KATZ CENTRALITY

Input: Graph G = (V,E), Source node ns, Target node nt, Intermediate node ni, Sharing probability ps, Diffu-

sion length nIter, Diffusion information from Algorithm 5 : d1 = (Count(ni), j)

Output: ∆CKatz(t), Updated part of diffusion : d2 = (Count(ni), j)

1: Load diffusion information d1

2: Set new diffusion information d2 = (Count(ni), j) for updating part

3: for Each seeds in node ni and ns in d1(j = 1) do
4: Random walk spread to opposite node

5: Save the changes in d2(j = 2)

6: end for // Check the initial case which is affected by the new connection

7: for Each iteration j from 2 to nIter do
8: for Each random walk in node ni and ns in d1(j) do
9: if r ∼ U [0, 1] < ps then

10: Random walk spread to opposite node

11: Update d2 for iteration j + 1

12: end if
13: end for // Check affected nodes and give chances to propagate

14: for Each random walk in node i according to d2 do
15: Set S = NG(i)

16: for node n in S do
17: if r ∼ U [0, 1] < ps then
18: Random walk spread to opposite node

19: Update d2 for iteration j + 1

20: end if
21: end for
22: end for // Process random diffusions by previous steps

23: end for
24: Count ∆rt from dictionaries

25: return ∆CKatz(t) = ∆rt/R, d2 // Track the updated diffusion processes

In order to find the node which maximizes the influence, now we only need several small sizes of calculation

for every new connection. By the same way, we can update the value when new edges are added to the original

graph rather than re-calculating. Our algorithm IKA combined incremental Monte-Carlo approximation on greedy

algorithm with candidate reduction technique. Since we can control the number of articles for simulation, this

algorithm becomes scalable to large size network. Pseudo code of IKA is described in Algorithm 7.
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Algorithm 7 INCREMENTAL KATZ APPROXIMATION(IKA)

Input: Graph G = (V,E), ns, nt, ps, R1, R2, nIter

Output: Set of nodes S = {ni1 , ni2 , ..., nik}
1: Approximate Katz centrality CKatz(t) : Initialize R1 articles from each node // Algorithm 5

2: Approximate Personalized Katz centrality CPKatz(t) : Initialize R2 articles from source node // Algorithm 5

3: Calculate Ist using CKatz(t) and CPKatz(t) // (4.3)

4: S = {}
5: VR = {}
6: VC = NG

2[ns]−NG[ns] // Two-hop neighbor

7: while ∆Ist > 0 do
8: VR = {nc|∆Ist < 0}
9: Find nm = argmax

nc∈VC

∆Ist using Algorithm 6 // Effectively recommend node by updating Ist

10: if ∆Ist > 0 then
11: G = G+ e(ns, nc)

12: S = S + nc

13: VC = VC − VR // Remove nonbeneficial nodes

14: Update Random Diffusion

15: Update VC
16: end if
17: end while
18: return S

4.3. Discussion on Algorithm Complexity

Next, we dicuss the time complexities of the proposed algorithms in Section 4.1 and Section 4.2. GREEDY

FINDER algorithm runs in while loop until there exists no candidate that increases influence or candidate set size

becomes k. The complexity inside the while loop depends on the size of the candidate set. In algorithm GREEDY

FINDER, first candidate set is equal to every node which is not directly connected to source node. And it gets

smaller by one as source node makes new connection with suggested node. In order to recommend k nodes,

GREEDY FINDER requires kn candidates. And for each candidate node, influence score from ns to nt should

be calculated. In order to calculate influence score, proportion of two Katz centrality - numerator is the source

node’s personalized version of Katz centrality over target, and the denominator is the Katz centrality of target

node utilizing global network. For the purpose of calculating Katz centrality matrix inversion process is required.

However direct matrix inversion does not work since the adjacency matrix of the network is always singular

because at least two vertices have same neighboring set. We used NetworkX module which computes the Katz

centrality by power iteration until it converge, and complexity of it is also O(n3). Hence, the overall complexity

of recommending k node by GREEDY FINDER is O(kn4).

And in TWO-HOP NEIGHBOR GREEDY FINDER, we reduce the candidate set from all unconnected node to

two-hop neighbor. Consider that the average degree is d, average number of two-hop neighbor of single node is

bounded by d(d − 1) in random network if considering the worst case that there is no overlap between friend of

friend. However in scale-free network, there is high chance to make connection with one of the hub nodes, and
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the size of two-hop neighbor is affected by the degree of the hub node. If we consider the worst case which is

star network, then the size of two-hop neighbor becomes n, so we can deduce that the number of candidate until

algorithm finds k nodes can be estimated by
k∑
i=1

d(d+ i) in the best case. Overall algorithm complexity becomes

O(d(d+ k2)n3) from O(kn4) .

Algorithm 4 further reduce the candidate set in every iteration. If an edge from ns to nk does not increase any

influence in iteration i, we remove it from the candidate set. Even though source node get many new connections,

there is low possibility that node nk will get suggested after another influence calculation. We cannot exactly

calculate how many node could be dropped from the list at this moment, so we leave it as one of our future work.

Next, we discuss the algorithm complexity of IKA. First we approximate influence score by two Monte-Carlo

simulations. First simulation is for the Katz centrality that all nodes affect, and another is the Katz centrality that

only the walks from source node affect. Only difference between those two simulations is the number of seeds

generated before starting the diffusion process. Since the number of node is big enough in real graph, we generate

single seeds on each node for calculating Katz centrality. And for personalized Katz centrality we generate enough

large number of seeds (smaller than n on large graph) on source node.

Initializing a seed on each node takes O(n) time. And then duplicating the post to its neighbor takes O(dn).

After the first round, post is successfully move to its neighbor if random variable meets sharing probability. Ratio

of average number of post for consecutive round is pd, since only chosen post can diffuse to the node’s next

neighbor. By continuing the simulation until all posts disappear, the time complexity of Algorithm 5 becomes

Θ

(
n+

∞∑
k=0

nd(dp)k
)

= Θ

(
n+

nd

1− dp

)
= O(nd). Note that personalized Katz centrality does not affect to

the total complexity of approximating influence if number of seed on source node R ≈ n.

In terms of the complexity, the advantage of the Algorithm 6 is significant. In previous algorithms, we

have to re-calculate Katz centrality whenever ns connects to new candidate node. But here we only need to

check the possibility of diffusion when random seed is on the each side of the new edge. Checking the whole

process needs O(d) and if new diffusion is generated we have to calculate until we finish the process. It takes

Θ

(
d

1− dp

)
= O(d). Lastly expected number of diffusion newly generated is Θ


∞∑
k=0

nd(dp)k

2

n

 = O(d). So

when original influence score is given, and there is new candidate node, we can calculate the change of influence

score onO(d2). With two-hop neighbors candidate set with approximation, finding a single node which maximizes

the influence takes O(d4). And in the same way, complexity of finding a k-node set becomes O(kd4) which

signifinantly improved from O(k2d2n3).
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Chapter 5. Experiment

In this section, we evaluate our algorithm and compare the recommendation result with existing algorithms.

And we aim to answer the following questions:

• How well IKA can solve our problem?

• What patterns and behavior does the recommended node of IKA has?

• How different our result compare to existing network growth model or friend recommendation model?

5.1. Implementation Details

The code for IKA has been written in Python. For synthetic network generation and implementation we

used Python NetworxX module [14]. All experiment were performed on a PC with Intel Core i5-4670 3.4GHz

processor, 8 GB of main memory and a 128GB SSD drive. Graphs we use in experiments along with their

descriptions are summarized in Table 5.1.

Topology Node Edges Description

Scale-Free [16]

100 99

m=1 (m : number of edges

to attach from a new node

to existing nodes)

1,000 999

10,000 9,999

100,000 99,999

1,000,000 999,999

200 398 m=2

100 297
m=3

1,000 2,997

100 990
m=10

1,000 9,990

Erdős-Rényi Random [10]
100 100

Average degree = 1
1,000 1,000

Table 5.1: Synthetic graph description
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5.2. Results

5.2.1 Time Comparison

In order to compare the performance between exact influence calculation and Monte-Carlo approximation, we

measured the time for recommending ten consecutive nodes. We setup the first five synthetic graph on Table 5.1,

and set the source node as the last node, and target node as the first node of the graph. In our graph generation

module, target node becomes one of the leaf nodes on the graph, and the source node becomes one of the hub

node having a largest degree. For approximating influence on IKA, we set the number of random seeds(R1 =

1, R2 = 10, 000) regardless of the network size. By the result, we found our algorithm IKA is much faster

and scalable compared to the greedy algorithms with exact influence calculation. Figure 5.1 shows the time

comparison between three methods algorithm 1, 3 and 7. All other algorithms fails to compute influence score

from n = 10, 000 except IKA since matrix calculation on Numpy module fails because of memory error when the

matrix size gets larger. Here IKA also shows the time increasing according to the network size. But it’s inevitable

since total time is proportional to candidate set size, which becomes larger as number of nodes increases.

Then, we experimented our algorithm on graphs having different densities. Figure 5.2 shows the time com-

parison between those graphs. Interestingly, we found that the running time on random graph is faster than the

power-law graph.
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Figure 5.1: Time comparison according to the number of nodes

– 20 –



|V| = 100 |V| = 1000

Random, |E| = |V|
Scale−Free, |E| = |V|
Scale−Free, |E| = 3|V|
Scale−Free, |E| = 10|V|

Size of Node

R
un

ni
ng

 T
im

e(
s)

 −
 IK

A

0
50

10
0

15
0

20
0

25
0

Figure 5.2: Time comparison according to network density

5.2.2 Error Analysis

Second we found that our random diffusion simulation results in similar influence score comparing with

the result calculated by power iteration of Katz centrality. For this experiment, we used scale-free graph with

|V | = 100, |E| = 100. Here we measure the influence after the first recommendation, and compare the error

between the exact value and approximated value. We experimented 30 times to get the mean of approximated

influence value. And we control the number of articles initializing from each node for approximation. R1 refers

the number of node initialized on each node for approximating Katz centrality and R2 refers the number of node

initialized on source node for approximating personalized Katz centrality. We use R1 = {1, 10, 100, 1000}, R2 =

{100, 1000, 10000, 100000}. And the relative error is measured as

|Ist − E[Ĩst]|
Ist

Figure 5.3 shows the relative error between IKA and GREEDY FINDER as increasing total number of articles

nR1(y-axis) and number of personalized random seed R2(x-axis) increases. Green color means accurate approx-

imation on this heat map. We can find that approximation becomes accurate with large R1 and R2. Interestingly,

the size of R2 affects more than the size of R1, because R2 is responsible to the value of rst.

And Figure 5.4 shows the variance of approximated influence Ĩst calculated 30 times. As we know that, more

simulations by using more random seeds guarantee the smaller variance between the results.
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Figure 5.3: Relative error between exact and approximated influence

Figure 5.4: Variance of approximated influence

5.2.3 Performance Comparison and Interpretation

We compared the performance of our algorithm with existing topology-based recommendation algoriths with

various node-to-node similarity measures. Performance measure of this experiment is cumulative influence gain

by having new connections. For the comparison, We implemented variation of node similarity measure such as
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common neighbor, Jaccard [39], SimRank [17].

Common neighbor(x, y) = |Γ(x) ∩ Γ(y)|

Jaccard(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

SimRank(x, y) = γ ·
∑
a∈Γ(x)

∑
b∈Γ(y) 1a=b

Γ(x) · Γ(y)

(5.1)

And we consider the two cases, one is consecutively finding the most similar node with ns, and another is finding

the most similar node with nt. For example of Jaccard(Target), we recommend the node that has the highest

Jaccard similarity with nt from the candidate set. Figure 5.5 to 5.8 shows the performance of IKA and existing

topology-based algorithm with node-to-node similarity measure. We used scale-free graph with |V | = 200, |E| =

396 for four different experiment settings.

• Figure 5.5 is the case where ns(leaf node) and nt(hub node) are initially unconnected

• Figure 5.6 is the case where ns(leaf node) and nt(leaf node) are initially unconnected

• Figure 5.7 is the case where ns(leaf node) and nt(hub node) are initially connected

• Figure 5.8 is the case where ns(leaf node) and nt(leaf node) are initially connected

There are several things to check in these figures. First, how cumulative influence changes depending on first

few recommendation. In detail, how many step is needed to get the large jump on influence gain. In the case

of 5.5 and 5.6, IKA connects to the most influential node in the first few steps. As we know that big jump of

influence value occurs by connecting to the nt directly, we can understand that recommendation before the big

jump is the process of indirectly exposing myself to target. And the recommendation result after the big jump is

the way of connecting to the target node’s neighbor. In the case of 5.7, we cannot find the big jump on both ideal

recommendation and our experimental result. Second, absolute value of cumulative influence difference depends

on each situation. Absolute value of cumulative influence is larger where ns and nt are both leaf nodes. We can

think that nt receive an article from the small number of peoples, therefore influence of ns can change rapidly by

the recommendation result.
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Figure 5.5: Friend recommendation result (ns, nt = not connected, ns = leaf, nt = center)

In 5.5 we are able to find interesting result. Only IKA suggests different nodes at the first recommendation,

which brings to big influence gain at the second step. This shows that node-to-node similarity measures do not

work effectively on the influence maximization problem.

– 24 –



0 5 10 15 20 25 30

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

∆Ist

Number of New Connections

BestCase
IKA
Common Neighbor(Target)
Jaccard(Target)
SimRank(Target)
Common Neighbor
Jaccard
SimRank

Figure 5.6: Friend recommendation result (ns, nt = not connected, ns = leaf, nt = leaf)

Figure 5.6 shows the case where two leaf nodes are not connected. In the real world, this is the main case

where an individual wants to express him/herself to another leaf node. Here, IKA find relevant nodes faster than

any other node-to-node recommendation algorithms using diverse similarity measures.

In Figure 5.7, we can describe the case where ns is a fan of a well-known individual nt, and they are

already connected. As long as nt maintains hubness, any connection from ns to other node guarantees influence

increasing. Of course, performance of IKA is superior against other recommendation methods.

Last experiment is a special case where recommendation is refrained, since two leaf nodes ns and nt are

already connected. Generating more edges around two users adversely affect on their information transfer. Unlike

other experiments, IKA stops after recommending nine nodes. After the second recommendation, each recom-

mendation result actually decreases the influence, however it seems that some new diffusions gave positive effect

on our approximation. Most algorithms using similarity measure fail to increase Ist because node-to-node similar-

ity is not directly directed to influence maximization, and two initial leaf nodes are connected from the beginning.
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Figure 5.7: Friend recommendation result (ns, nt = connected, ns = leaf, nt = center)
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Figure 5.8: Friend recommendation result (ns, nt = connected, ns = leaf, nt = leaf)

– 26 –



Chapter 6. Conclusion and Future Directions

6.1. Summary of Findings

In this paper, we proposed the social network environment when the user has a specific target node to maxi-

mize its influence. In our problem, maximizing influence is indirectly done by having relevant friend suggestion

to source node, since the new friend will share the post and increase the probability that the post will arrive to the

target node. We defined the influence as how much effect that source node’s post has on target node’s feed. And

we formulated our problem as suggesting a node one-by-one which maximizes the influence score.

The purpose of our friend recommendation is maximizing influence over specific target, rather than suggest-

ing a similar node with the user. So traditional friend recommendation algorithms may not guarantee the good

result. So we modeled our environment from the scratch, and designed our algorithm.

One finding is that the influence score matches with the definition of Katz centrality. The amount of effect

that source node’s post on target node’s feed can be calculated, when we estimate how many posts that the target

node can receive from source node, and among the network. Since we assumed that each person share any post

with deterministic probability, and the post can be transferred to the neighbors of it, the total number of post that

target node can receive is equal to Katz centrality of target node. And the number of post from source node can be

also measured by considering the effect of all paths between two vertices.

However, we met with huge computational cost. In order to recommend k-node that maximizes influence,

we need to calculate influence for exponential amount of time. Inevitably we allowed greedy algorithm which

recommend node set one-by-one which maximizes influence. Although our approach changed into heuristic way,

computation issue haven’t solved at once. In order to recommend a single node, we need to calculate influence for

all nodes except the neighbors in the network. The total algorithm complexity becomes O(kn4) in this case.

To tackle this problem, we reduced the size of candidate set. First, we only consider the second-hop neighbor

of the source node which has at least single mutual friend. This condition also guarantees that all candidate node

has positive node-to-node similarity values. However, as source node is getting more connection, size of the

candidate set became larger. Considering the power-law graph, there is high probability that the node can make a

connection with one of the hub nodes which can cause scalability issue again. So, second we decide to cut down

nonbeneficial nodes from the candidate set. Nonbeneficial nodes are the nodes which decreases influences over

target when source node makes new connection with one of them. This reduction is possible since there is little

possibility that nonbeneficial node will be suggested among all candidate nodes.

With candidate reduction, we engaged in approximation and incremental calculation of influence value. Katz

centrality computation for influence needs matrix inversion, which cause memory shortage and huge computa-

tional burden. So we applied Monte-Carlo simulation for approximation. Since we only store the number of

posts exists in each node for every period, huge benefit occurs for both computation speed and memory stor-

age. In addition to single approximation, we incrementally update the influence value on the case of having new
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connection. For incremental update, we can independently consider the post which located at the end of new

connection, adding the new random post diffusion starting from those nodes. In this way we can also suggest k

nodes incrementally, by significantly reducing the computation overlap.

We validated the performance of our algorithm using both synthetic graphs and real graphs. First, we showed

our Monte-Carlo approach is much faster than computing influence in scalable graph, and we analyzed the error

rate according to the size of articles for simulation. Second, we presented our algorithm IKA works superior than

current topology-based friend recommendation algorithms in influence maximization problem.

6.2. Future Work

• More Reduction on Algorithm Efficiency

Although we scaled down the algorithm complexity, still we have some place to boost the algorithm. For

example, each iteration we calculate the influence score for all candidate nodes. After having new con-

nections, we have to calculate the influence score again for those nodes plus new neighbors. However our

algorithm does not save previous values for next recommendation. If we find the way to save all diffusions

efficiently, we can also improve this part by incrementally calculating the effect of a new edge.

• Unsolved Scalability Issue

Although we approximate the calculation of Katz centrality and incrementally apply IKA into larger net-

work, our algorithm still have serious time complexity when the network becomes denser. Main reason is

that candidate set sizes grows faster when there exists more edges, and also the degree of the hub node is

much larger.

• Extend to Multiple Targets

In this thesis, we proposed network growing mechanism on the view of single source node and a target

node. We can extend the setting into multiple targets, especificly a group. We can suggests a set of node to

maximize the influence over target group.

• Apply More Realistic Settings

We can generalize or make our problem more realistic considering the fact that every user in social network

has different posting behavior and sharing probability. By applying it to real data, we can suggest a new

recommendation platform.

• Asymmetric behavior in a network

The main idea of this thesis comes from the contemplation of hidden asymmetric behavior in a network.

Connecting to the set of nodes is the one possible solution to resolve this asymmetry and we suggest an

algorithm to find those set. Another potential future work direction is to design the diverse way to analyze

asymmetric relationship in a network.
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요약문

특정사용자로의영향력을최대화하는친구추천방법

본논문에서는소셜네트워크상에서영향력을확장하고싶은특정사용자가존재할때,그영향력을최대

화할수있는친구를한명씩추천하는알고리즘(IKA)을제안한다. 소셜네트워크의뉴스피드등에서우리는

직접 연결된 사용자들의 소식 뿐만이 아니라 그들이 관심 있어 공유한 다양한 글들을 접하게 된다. 이런 네

트워크 상에서 특정한 사용자에게 자신의 영향력을 극대화하고 싶을 때, 자신의 정보의 전파에 도움이 되는

새로운친구추천이가능하다면다양한이익을가져올수있을것이며이러한생각으로부터연구를시작하게

되었다.

기존의 친구 추천 알고리즘은 네트워크 구조 및 프로필의 유사도가 높은 사용자를 추천해 주지만, 특정

사용자에게나의영향력을증가시키는목적과는무관하다. 우리가제시한문제를해결하기위해소셜네트워

크 상에서 문제 정의를 하였다. 먼저 소셜 네트워크 상에 업로드한 게시물은 직접 연결된 친구들의 게시판에

올라가게 되고, 친구가 해당 게시글을 공유하거나 답하는 등의 행동을 통해 그의 이웃으로 전파되는 모델을

설정하고, 사용자 A가 B에 미치는 영향력은 B가 받는 모든 게시글 중 A로부터 도착한 게시글의 비율로 정

의하였다. 한 사용자가 받는 게시글의 개수는 우리가 설정한 모델 내에서 Katz centrality의 정의와 부합함을

확인하였다. 영향력을최대화하는연결조건에더불어어떤사용자에게친구요청을하였을때수락하지않을

확률을두노드사이의유사도를이용하여모델링하였고,추천과정에함께고려하였다.

친구를 추천을 위해서는 네트워크 상에서 직접 연결되지 않은 모든 사용자들에 대해, 각각 연결되었을

때 증가하는 영향력을 계산하는 과정을 거쳐야 하는데 이 경우 불필요한 연산이 매우 많아진다. 따라서 본

논문에서는 몬테 카를로 시뮬레이션을 통하여 Katz centrality를 근사하였고 새로운 연결이 추가 될 때, 특정

사용자에게 내가 미치는 영향력를 처음부터 계산하는 대신 추가된 연결로 인해 게시글이 네트웍상에 퍼지는

부분만따로추가하여알고리즘의복잡도를크게개선하였다.

다양한 크기와 구조를 가진 합성 네트워크와 실제 소셜 네트워크 데이터를 통해 기존 알고리즘에 비해

제안한알고리즘 IKA의속도가월등하고,커다란그래프를처리할수있음을보였다. 또한정확한값의영향

력을계산하였을때와근사알고리즘의결과역시유사함을보였다.

핵심단어 - 특정사용자가존재하는네트워크;친구추천알고리즘;영향력최대화;소셜네트워크에서의정보

전파; Katz Centrality의근사방법
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멤버들, iPodia 조교를 함께 하며 만나게 된 용일이형과 이경민 선생님, 모리슨 교수님과 5개국 많은 학생들,

그리고 최근에 알게 된 스윙 피버 식구들. 이 분들과 함께한 다양한 경험이 있었기에 지겨울 법도 한 카이스

트 캠퍼스에서 7년째 보내면서도 항상 웃음을 잃지 않았습니다. 그리고 내 베프, 이젠 취업 준비하느랴 바쁜

은홍이와성희,내가비록대전에있어서항상같이놀지는못하지만계속친하게지내줘서고맙다.

끝으로 대전에 지내는 기간이 길어질수록 집에 소홀해 졌는데, 멀리서나마 항상 응원해 주신 부모님과

동생에게감사합니다.

사람과 사람 사이의 관계에서 필연적으로 발생하는 서로간의 비대칭성에 대해서 생각해보고, 이를 수치

화하기 위한 방법이 무엇이 있을까 고민하였습니다. 위의 비대칭성을 깨고 특정한 사용자에게 주목을 받고

싶은 한 유저의 입장에서 적절한 친구 추천은 간접적으로 영향력을 극대화할 수 있는 좋은 어플리케이션이

될 것이라 생각했고, 특정 사용자가 존재하는 네트워크에서 친구를 추천하는 방법을 제안하였습니다. 어떤

문제를제시하고좀더나은방법으로해결하는하나의사이클을이번논문을작성하면서경험해볼수있어서

보람찼습니다. 아직은미진한수준이지만이작은결실이앞으로진행할연구에큰원동력이되길기대합니다.
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