
Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

ARCLE: THE ABSTRACT AND REASONING CORPUS LEARNING
ENVIRONMENT FOR REINFORCEMENT LEARNING

Hosung Lee1∗, Sejin Kim1∗, Seungpil Lee1, Sanha Hwang1, Jihwan Lee1, Byung-Jun Lee2, Sundong Kim1

1Gwangju Institute of Science and Technology
2Korea University
gitpush-force@gm.gist.ac.kr, sundong@gist.ac.kr

ABSTRACT

This paper introduces ARCLE, an environment designed to facilitate reinforcement learning re-
search on the Abstraction and Reasoning Corpus (ARC). Addressing this inductive reasoning bench-
mark with reinforcement learning presents these challenges: a vast action space, a hard-to-reach
goal, and a variety of tasks. We demonstrate that an agent with proximal policy optimization can
learn individual tasks through ARCLE. The adoption of non-factorial policies and auxiliary losses
led to performance enhancements, effectively mitigating issues associated with action spaces and
goal attainment. Based on these insights, we propose several research directions and motivations for
using ARCLE, including MAML, GFlowNets, and World Models.

1 INTRODUCTION

We introduce ARCLE (ARC Learning Environment) as a reinforcement learning (RL) environment designed for the
Abstraction and Reasoning Challenge (ARC) benchmark (Chollet, 2019a). This benchmark assesses agents’ ability to
infer rules from given grid pairs and predict the outcome for a test grid, as illustrated in Figure 1. ARC is designed to
test abstraction and reasoning skills, making it touch benchmark within the domain. Despite various attempts to con-
quer ARC’s complexities through program synthesis and reasoning with large language models, RL-based approaches
are surprisingly rare (Section 2.1). We believe this scarcity is due to the lack of a dedicated RL environment tailored
for ARC. To fill this gap, we created ARCLE based on Gymnasium (Towers et al., 2023) to tackle the benchmark.

Figure 1: Four different ARC tasks are presented, each requiring analysis through its provided Demo Pairs. The
identified rule from this analysis must then be applied to a Test Input grid to produce the answer grid, which is
currently blurred for demonstration purposes. The specific rules for each task are as follows: Task 1 modifies all gray
grids within a row to match the color found in the far-left column of that same row. Task 2 relocates four identical
cyan objects appropriately, each no larger than 2×2 in size. Task 3 determines the color of the topmost line in a stack
of overlapping horizontal and vertical lines, and outputs a single pixel of this color. Task 4 transforms the Test Input
grid by coloring all but the pixels at the intersections of even-numbered rows and columns in blue.

∗ Equal Contribution

1

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

From RL’s standpoint, ARC is considered highly challenging. The typical difficulties include (1) a vast action space,
(2) a hard-to-reach goal, and (3) a variety of tasks. While other RL benchmarks (e.g., robotics, financial trading, rec-
ommender systems, video games) might feature one of these challenges, ARC encompasses all, showing its difficulty.
ARCLE is designed to help researchers navigate these challenges, offering a unique testbed for RL strategies.

Vast action space ARC stands out with its vast action space by allowing a variety of actions such as coloring,
moving, rotating, or flipping pixels. This feature creates a large set of possibilities, complicating the development of
optimal strategies for RL agents. Such a vast action space demands innovative approaches to navigate effectively.

Hard-to-reach goal ARC tasks are uniquely challenging because success is measured by the ability to replicate
complex grid patterns accurately, not by reaching a physical location or endpoint. This requires a deep understanding
of the task rules and an ability to apply them precisely. Designing effective reward systems is particularly challenging
in this context, as progress is not easily quantified. Each ARC task demands not just strategic action but also a nuanced
comprehension of the underlying patterns and rules.

Variety of tasks ARC’s wide array of tasks necessitates broad generalization, a stark contrast to benchmarks like
Atari, which focus on mastering single games.1 This diversity calls for adaptive and varied strategies, highlighting
ARC’s demand for advanced RL methods.

ARCLE is an environment which helps overcome the challenges of ARC and paves new pathways for AI research,
seamlessly linking abstract reasoning in ARC with the adaptability in RL. Our initial experiments highlight the capa-
bility of RL to address specific tasks within ARC, indicating the potential necessity for advanced techniques such as
meta-RL, generative models, or model-based RL algorithms. Thus, ARCLE stands out as a platform for testing RL
solutions, prompting an in-depth exploration of the challenges ARC presents.

2 RELATED WORKS

2.1 SOLVING ARC

Since the unveiling of the ARC (Chollet, 2019a), approaches ranging from the development of similar benchmarks (Qi
et al., 2021; Kim et al., 2022; Xu et al., 2023a) to domain-specific languages and program synthesis (Banburski
et al., 2020; Acquaviva et al., 2022; Assouel et al., 2022; Alford et al., 2021; Witt et al., 2023; Ainooson et al.,
2023) have been explored to extend its applicability and enhance learning strategies. These efforts have deepened
our understanding of ARC’s challenges, highlighting the complexity of devising comprehensive solutions. The recent
shift towards leveraging Large Language Models (LLMs), incorporating strategies from natural language processing
to detailed task context integration (Camposampiero et al., 2023; Xu et al., 2023b; Moskvichev et al., 2023; Mitchell
et al., 2023; Lee et al., 2024), underscores LLMs’ potential in addressing ARC’s intricacies.

However, the performance of research utilizing program synthesis and LLMs has not fully met expectations, often due
to its logical flaw, called hallucination. This has prompted a pivot towards reinforcement learning as a novel approach,
albeit its application to ARC has been limited so far. Notable attempts include the use of RL strategies in program
synthesis (Butt et al., 2024) and the exploration of imitation learning (Park et al., 2023). The introduction of ARCLE
opens up new possibilities for advancing research on the ARC using RL.

2.2 RL ENVIRONMENTS SIMILAR TO ARCLE

Among the myriad RL environments, those featuring a vast action space similar to ARCLE’s are prominently observed
in game-based settings, such as PySC2 (Vinyals et al., 2017), where the diversity of actions, determined by mouse
click locations, mirrors the flexible action format in ARC. Similarly, environments designed for recommendation
systems (e.g., RecSim, RecoGym) and complex multi-step planning tasks (e.g., Super Mario Bros (Kauten, 2018),
NLE (Küttler et al., 2020)) may not exhibit wide action spaces at each state but encapsulate the challenge of hard-
to-reach goal through the necessity of sequential decision-making to achieve success. In parallel, the breadth of tasks
within ARCLE resonates with the diverse objectives found in robotics environments like Meta-World (Yu et al., 2020),
RLBench (James et al., 2020), and CALVIN (Mees et al., 2022), underscoring the complexity and variety of tasks
that ARCLE introduces to RL research.

1Atari benchmarks hosts 57 games, each with its goal. Solutions such as Rainbow DQN (Mnih et al., 2013), R2D2 (Revaud
et al., 2019), MuZero (Schrittwieser et al., 2020), and Agent57 (Badia et al., 2020) focus on mastering single games.

2

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

3 ARCLE: ARC LEARNING ENVIRONMENT

ARCLE is a reinforcement learning (RL) environment package, implemented in Gymnasium, designed for RL ap-
proaches on Abstraction and Reasoning Corpus (ARC). RL agents on the ARCLE environments learn to solve tasks
by selecting actions to edit the grid (to be submitted) to the environment state. As Figure 2 illustrates, ARCLE com-
prises three main components: envs, loaders, actions, and auxiliary wrappers which modify the environment’s action
or state space. The following explanation is based on the terms in Table 1.

The envs component consists of a base class of ARCLE environments, and its three derivatives. AbstractARCEnv
inherits Gymnasium’s Env class to provide reinforcement environment features and defines the ARC-specific general
structure of action and state space and user-definable methods. And its implementations, O2ARCEnv, ARCEnv and
RawARCEnv provide embodied action and observation spaces. O2ARCEnv constructs the state and action space ac-
cording to the O2ARC interface (See Appendix A.3), and likewise, ARCEnv offers the testing web interface developed
by Chollet (2019b). RawARCEnv restricts the action space to color modifications or grid size changes, providing a
more constrained and monotonic learning environment.

Figure 2: Overall framework of ARCLE.

Next, the loaders component provides functionalities to feed the ARC dataset to ARCLE environments. This compo-
nent consists of the base Loader class defining interface requirements to ARCLE environments and its implemen-
tations. ARCLoader feeds the ARC dataset to any ARCLE environments, defining how the ARC dataset should be
parsed from files and how the parsed dataset should be picked. Likewise, to load a similar dataset, one can inherit the
Loader class and specify how to parse and sample. As an example, we implemented MiniARCLoader which loads
Mini-ARC dataset (Kim et al., 2022).

Last, actions component includes a variety of functions capable of changing environment state, called operation.
Each environment in ARCLE contains several operations to be used in an environment by agents on the environment.
Since ARCLE currently implemented actions on the O2ARC interface, it contains more actions (e.g., Move, Rotate,
Flip) than the original ARC testing interface (Chollet, 2019b).

We focus on explaining O2ARCEnv in the following sections, which encompasses most operations by ARCLE.

Figure 3: The state transition process of ARCLE.

3

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

Table 1: Variables in action and state spaces and their definition.

Variable Space Name Definition

Action operation Integer index representing edit method of environment state (e.g., grid, clip)
selection Binary mask that specifies where a operation to be applied

State input Input grid of demonstration pair or test pair
input dim Dimension (height, width) of input
grid Editable output grid of demonstration pair or test pair
grid dim Dimension (height, width) of grid
clip Clipboard grid
clip dim Dimension (height, width) of clip

State selected Binary array which represents currently selecting pixels for object-oriented operations
(object states) active Boolean variable of whether last operation was an object-oriented operation

object Backed-up pixels of specified pixels of grid for object-oriented operations
object sel Binary mask of exact shape which pixels of object that user has specified
object dim Dimension (height, width) of bounding box of object and object sel
object pos Left-top position of bounding box of obejct on the grid
rotation parity Binary value for consistency over serial rotations
background Pixels remaining in the grid excluding

Answer answer Answer grid of test input grid
(Hidden to agents) answer dim Dimension (height, width) of answer grid

3.1 ACTIONS

Actions in ARCLE are defined to enable editing of the output grid for a given task, consisting of operation and
selection. Operation represents an integer that specifies the method of editing (functions in the actions block in
Figure 2), and selection is a binary mask that denotes the area of the grid affected by the edit.

By defining ARCLE’s actions through operation and selection as illustrated by the action in the middle of
Figure 3, we have standardized various types of actions within the same structure. Notably, the actions in ARCLE
can affect a single pixel, contiguous multiple pixels, or even non-contiguous pixels, accommodating these possibilities
through the introduction of the binary mask selection. Furthermore, by separating operation and selection, it
accommodates the possibility of determining selection conditioned by chosen operation autoregressively.

Figure 4: Every operation assigned in O2ARCEnv (version 0.2.5). Category of operations (left), available opera-
tions (middle), and brief examples (right) are shown.

Currently, 35 operations are available in O2ARCEnv (Figure 4). When an agent specifies the operation index, the
corresponding one is executed. Specifically, operation indices 0–9 represent Coloring the selected pixels (by
selection) with one color among the ten colors used in ARC, while 10–19 denote a Flood Fill based on Depth-
First Search (DFS) in the selected pixels. Actions not present in the original ARC interface (Chollet, 2019b), such as
Move, Rotate, and Flip, are assigned to 20–23 (up, down, right, left), 24–25 (counterclockwise, clockwise), and
26–27 (horizontal, vertical), respectively. Additionally, 28–30 correspond to actions for Copy and Paste, and 31–34
are assigned to actions that cause breaking changes in the states like duplicating the test input (CopyInput), clearing
the grid (ResetGrid), changing the grid size (ResizeGrid), and submitting (Submit).

Customization of specific actions by adding or removing them in the same format is freely allowed by subclassing the
environments. For a detailed description of every operation in ARCLE, see Appendix A.4.

4

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

3.2 STATES & OBSERVATIONS

All environments included in ARCLE are designed with the assumption to be Markov Decision Processes (MDP).
Therefore, every parameter used in changing the environment’s state is given to agents in the environment, so obser-
vations and states can be considered equivalent. The basic state space of an environment within ARCLE consists of
the input and grid. Input represents the test input grid of an ARC task, so it is fixed unless a new task is assigned
to an environment. Grid is initially set as the test input grid of a task, and an agent edits this by selecting actions.

Depending on which operations an environment adopts, the state of the environment can be different. For instance, if
an environment includes Copy operations, the environment should include an additional variable of the copied part:
clip. Hence in O2ARCEnv, more variables are included in the state, to support copy and object-oriented opera-
tions such as move. These object-oriented actions from the O2ARC interface are supplemented with selected,
object, object pos and background. Descriptions of these variables are depicted in 1. While the agent per-
forms object-oriented operations in a row, object and background works as two layers; object is overlayed on
the background at object pos. For the detailed mechanism described in Section A.5.

3.3 REWARDS

The built-in reward currently offered in ARCLE is the sparse reward. This reward grants 1 when the agent performs the
submit action and the state space’s grid exactly matches the task’s answer grid, and 0 if even a single pixel differs.
This sparse reward approach can hinder the learning of an agent whose total reward sum remains 0 as there is a unique
answer per task. To counteract this, an auxiliary reward was designed and utilized in the subsequent Section 4.1. This
auxiliary reward adds a penalty term based on the ratio of the number of incorrect pixels to the total pixels, guiding the
agent to learn in a direction that minimizes the number of pixels differing from the correct grid. Identifying a reward
setting superior to this auxiliary reward setup, i.e., one that can be universally applied across all ARC tasks aware
environment’s action space (e.g., object-oriented operations), requires further research.

3.4 SOURCE CODE

Since the environments in ARCLE implemented based on Gymnasium (Towers et al., 2023) and are fully written in
Python3, users who have used Gymnasium or its predecessor, OpenAI Gym (Brockman et al., 2016), can use it with
familiarity. ARCLE is released on GitHub2 under the terms of the Apache-2.0 License, as well as uploaded to the PyPI
(Python Package Index), so the ARCLE can be easily installed by the pip command.3 Without modifying the source
code, one can still create custom ARCLE-based environments by subclassing provided environments in ARCLE or
wrapping with the wrapper classes. Please note that ARCLE is currently being continuously updated, so users may
need to check the version. In this paper, our descriptions and experiments are based on version 0.2.5.

3.5 API & SAMPLE USAGE

Listing 1: Basic Usage of ARCLE environment
(O2ARCEnv) using Gymnasium API. Action is ran-
domly sampled.

import arcle
import gymnasium as gym

env = gym.make('ARCLE/O2ARCEnv', render_mode='ansi')
obs, info = env.reset(options={'adaptation': True})

for _ in range(1000):
action = env.action_space.sample()
obs, reward, term, trunc, info = env.step(action)
if term or trunc:

obs, info = env.reset()

Listing 2: BBox wrapping of the environment. Action is
randomly sampled once, resulting in a 5-tuple. Continu-
ing code from Listing 1.

from arcle.wrappers import BBoxWrapper

env = BBoxWrapper(env)

obs, info = env.reset()
action = env.action_space.sample()
print(action) # 5-tuple: (y1, x1, y2, x2, op)

Using Gymnasium API, an ARCLE environment can be created. Listing 1 is the most basic usage of the ARCLE
environment loop. In the code, the O2ARCEnv is created and its reset method is called to initialize the environment

2https://github.com/ConfeitoHS/arcle
3$ pip install arcle==0.2.5

5

https://github.com/ConfeitoHS/arcle

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

to the input grid state of a random ARC task. If adaptation is True in the reset options, the environment samples
and initializes states and answers as a demonstration pair, otherwise, initializes as a test input pair. Next, within a loop,
the sample function from the Gymnasium API is executed to select a random action, and the step function applies
this action to the current state. Finally, if the state reaches the correct solution, the reset function is executed again
to start the loop over with a new ARC task.

An example of using a bounding box form for selection (in action space) instead of a raw binary mask, is shown in
Listing 2. The environment is wrapped using a BBoxWrapper from ARCLE. As a result, the random action returned
by the sample function consists of a tuple of five numbers, the first four values representing the bounding box of
the selection and the last value specifies operation. While configuring selection as a raw binary mask for
a grid of size H ×W offers the advantage of allowing free-form object configurations, it also poses the problem of
having a very large action space ofO(2HW). On the other hand, configuring selection as a bounding box simplifies
it to four integers, reducing the action space to O(H2W 2), but it limits the shape of the object to a rectangle. This
restriction is in place that necessitates the selection of background pixels when dealing with non-rectangular objects.
However, ARCLE actions differentiate between zero-valued pixels, which are considered blank, and non-zero pixels.
This distinction ensures that when the object is isolated from other pixels, there will be no overlap of irrelevant pixels
by the background when object-oriented actions are applied.

4 ARCLE BENCHMARKS

This chapter explains the process through which an agent learns to solve synthetic tasks using the ARCLE environment.
To ultimately solve ARC, the agent must acquire the ability to tackle unseen tasks through the learning process of tasks
provided in the training dataset. We speculate that approaches like meta-RL, generative models (e.g. GFlowNet), and
model-based RL algorithms (e.g. World Models) may be necessary to solve tasks not observed during training. As
a preliminary step, we describe the initial results for learning an individual task. The PPO-based agent learns the
input/output grid pairs presented in one of the ARC tasks. If a method can be designed for the agent to understand and
learn from these tasks, we anticipate that it could be trained to solve unlearned tasks using the approaches mentioned
above with this agent.

4.1 SOLVING ARC WITH A GIVEN ANSWER: HANDLING THE LARGE DISCRETE STATE-ACTION SPACE

While we expect ARCLE agents to be better at imitating the cognitive process of human problem-solving, training
an RL agent for ARCLE itself additionally becomes a difficult challenge due to its large discrete state-action space.
In this Section, we demonstrate the difficulty of obtaining highly performant agents within an ARCLE environment
even when the state-action spaces are simplified and the answers are given, and we propose ARCLE-specific auxil-
iary loss functions and network architectures that can significantly improve agents’ performance. Specifically, we use
operations of 0–9 only with rectangular-shaped selection only (in a bounding box representation), and conse-
quently, the sufficient information for decision making (i.e., the state s) becomes (grid, grid dim, answer,
answer dim) as we additionally assume answers to be given. We expect the methods introduced here to be used to
help train ARCLE agents for the original ARC, where the answers are not provided and state-action spaces are more
complex.

Proximal Policy Optimization (PPO) We employed the well-known PPO algorithm (Schulman et al., 2017) to
train the agents to solve ARCLE with the answers given. Due to the poor generalization ability (Kumar et al., 2021)
and learning instability of value-based RL algorithms, recently, PPO has been widely adopted for tuning large neural
models (Stiennon et al., 2020; Ouyang et al., 2022). It is an on-policy policy-gradient algorithm that aims to perform
a gradient update within the trust region. We gather trajectories and construct a dataset D = {(si, ai, Ri)}i consisting
of state, action, and returns (sum of discounted rewards starting from the state). Then, the policy is updated according
to the following losses (L = LBaseline + LPPO) with samples from D:

LBaseline(ψ) = ED

[
(r − Vψ(s))

2
]

LPPO(θ) = ED

[
min

(
πθ(a|s)
πold(a|s)

(r − sg[Vψ(s)]) , clip
(
πθ(a|s)
πold(a|s)

, 1− ϵ, 1 + ϵ

)
(R− sg[Vψ(s)])

)]
,

where Vψ is a value function that works as a baseline that reduces the gradient variance, πold is a policy used to
gather the trajectories, and sg[·] is a stop-gradient operator. r ∈ [−1, 0] is a reward from a dense reward function that
penalizes the agent by the ratio of incorrect pixels of the next state.

6

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

0 2 4 6
Policy Updates ×105

40

30

20

10

C
um

ul
at

iv
e

R
ew

ar
d

0 2 4 6
Policy Updates ×105

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

0 2 4 6
Policy Updates ×105

40

30

20

10

C
um

ul
at

iv
e

R
ew

ar
d

0 2 4 6
Policy Updates ×105

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

Random initial grids and answers Initial grids and answers from ARC problems

L L + Lrt 1 L + Lrt 1 + Lrt L + Lrt 1 + Lrt + Lst + 1

Figure 5: Performance of agents when various auxiliary losses are additionally used are shown. The experiment is
repeated four times, and the shaded regions denote 95% confidence intervals.

State Encoder We used a shared state encoder for the policy πθ and the baseline Vψ based on a Transformer encoder
architecture (Vaswani et al., 2017). Each pixel of grid and answer is encoded as a token by taking a summation over
corresponding position, color, and token type embeddings, where token type embedding informs whether it belongs
to grid or answer. Depending on grid dim and answer dim, the tokens with an inactive pixel are masked so
that it is not attended by other tokens. Each function gets its own special token(s) and feed-forward network to pass
the extracted state feature from its token. The baseline Vψ use a single special token for its scalar output whereas the
policy πθ uses two or more tokens for representing both operation and selection, which will be detailed in
Section 4.1.2.

In the following experiments, we only used tasks with grid dim and answer dim less than 5 × 5 due to the
computational demand of the current state encoder architecture. However, it can be alleviated by using more scalable
architecture, e.g., a patch as a token instead of a pixel as a token (Dosovitskiy et al., 2020). We experimented using
two different settings, (1) a random setting where we use the randomly generated 5×5 initial grid and goal, and (2) an
ARC setting where we used initial grids and goals that are equal or smaller than 5× 5 from ARC tasks. In the random
setting, we need to act precisely due to the vast number of different goals, whereas in the ARC setting, we need to
adapt to various grid sizes.

4.1.1 LEARNING BETTER REPRESENTATION THROUGH AUXILIARY LOSS FUNCTIONS

Using an auxiliary loss function to predict important information has been a widely used approach for better gener-
alizable representation and faster training (Jaderberg et al., 2016; Lample & Chaplot, 2017). We experimented three
different auxiliary losses, (1) Lrt−1

predicting the previous reward rt−1 from the current state st, (2) Lrt predicting
the current reward rt from the current state-action (st, at), and (3) Lst+1

predicting the next state st+1 from the cur-
rent state-action (st, at). All three functions are deterministic, and they are highly informative as they are correlated
to either the value function or the action-value function. For policy architecture, we used the color-equivariant policy
architecture that will be detailed in Section 4.1.2.

While the first auxiliary loss Lrt−1
can be easily adopted by additionally training a feed-forward network on top of the

extracted state feature from the special token of Vψ , the other two auxiliary losses require the state-action feature that
is not utilized in conventional PPO. We compute the state-action feature by performing a forward propagation again
with additional action embedding tokens after sampling an action from a policy. The prediction for the loss Lrt is done
on top of the last action token that embeds selection, and the prediction for the loss Lst+1

is done on top of tokens
that represent each pixel of grid.

The results are reported in Figure 5. Note that the vanilla PPO agent was not able to learn anything in the random
setting despite the vastly simplified state-action space, demonstrating the difficulty of training an agent for ARCLE.
While all of the experimented auxiliary losses improve the learning of the agent, it can be seen that adopting auxiliary
features and adopting state-action feature-based auxiliary features make a significant difference in performance. Only
with all three of these auxiliary losses, we were able to get three agents out of four that achieved a success rate larger
than 95% in the random setting. On the other hand, in the ARC setting, auxiliary losses were able to help, but their
effect was relatively less dramatic.

7

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

0 2 4 6
Policy Updates ×105

40

30

20

10

C
um

ul
at

iv
e

R
ew

ar
d

0 2 4 6
Policy Updates ×105

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

0 2 4 6
Policy Updates ×105

40

30

20

10

C
um

ul
at

iv
e

R
ew

ar
d

0 2 4 6
Policy Updates ×105

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

Random initial grids and answers Initial grids and answers from ARC problems

Non-sequential Policy Sequential Policy Color Equivariant Policy

Figure 6: Performance of agents when equipped with different policy architectures. The experiment is repeated 4 times,
and the shaded regions denote 95% confidence intervals.

4.1.2 NON-FACTORIZABLE POLICY ARCHITECTURE

It can be observed that the two main components of the action space of ARCLE, operation and selection, are
intertwined with each other and cannot be separately decided. For example, the optimal selection for coloring a
pixel, or rotating an object will be completely different. This observation shows that the considerate choice of policy
architecture is necessary, as conventional factorized policy assuming (operation ⊥⊥ selection) | s will have
limited expressivity in representing such complex multimodal distributions. For all experiments in this section, we
used all three auxiliary losses introduced in Section 4.1.1.

To demonstrate the expressivity of different policy architectures, we experimented with the following three architec-
ture types: (1) Non-sequential policy assumes (operation ⊥⊥ selection) | s. This policy is implemented by
using two special tokens for operation and selection with two feed-forward networks on top of extracted fea-
tures from those tokens. (2) Sequential policy does not assume conditional independence, by making the decision of
selection dependent on sampled operation, similar to the RNN policy of Vinyals et al. (2019). This policy
requires two forward passes to sample an action, one for sampling operation from its special token and one for
sampling selection from the token embedding the sampled operation, and therefore it is more computationally
demanding.

On the other hand, we also experimented (3) Color-equivariant policy that takes advantage of the ARCLE task that
the same permutation of colors applied to the task and the policy coloring actions results in the equivalent task, i.e., the
color equivariance. We can achieve color equivariance of the policy by using several special tokens for policy equal
to the number of operation to represent them, and by setting a special token of color-related operation as a
function of color embedding used to represent grid. We can then use two different feed-forward networks on top of
extracted features of these operation tokens. One gives scalar output per token to be used as logits for deciding the
operation. The other one is used to get the operation-specific selection on top of the sampled operation
token. This policy only requires one forward pass with a few additional operation tokens, and it is computationally
efficient compared to the sequential policy.

Figure 6 summarizes the result. Overall, it can be observed that sequential policy and color equivariant policy outper-
form non-sequential policy, showing that conditional dependence is crucial for learning in ARCLE. Sequential policy
shows more stable and faster learning compared to color equivariant policy in terms of policy updates. However, con-
sidering that sequential policy takes approximately 1.5x training time and 2x inference time, there is a clear trade-off
and we can choose from two depending on the situation.

4.1.3 ARCLE AS A CONTINUAL RL ENVIRONMENT

To address the inherent challenges of the ARCLE environment, it may be necessary to provide an agent with a curricu-
lum. In such scenarios, an agent capable of continuously learning from a changing set of tasks would be beneficial. We
conducted a continual RL experiment to demonstrate the robust learning capabilities of the proposed policy architec-
tures in response to task changes. In this experiment, the initial grids and answers were randomly generated as before,
but the number of colors used increased periodically—specifically, across five learning phases with 2, 4, 6, 8, and 10
colors respectively.

8

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

0 2 4 6 8
Policy Updates ×105

40

35

30

25

20

15

10

C
um

ul
at

iv
e

R
ew

ar
d

0 2 4 6 8
Policy Updates ×105

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

Non-sequential Policy Sequential Policy Color Equivariant Policy

Figure 7: Performance of agents on continual RL task when equipped with different policy architectures. The experi-
ment is repeated 4 times, and the shaded regions denote 95% confidence intervals.

As depicted in Figure 7, all agents experienced a significant drop in performance whenever the number of colors
increased. Similar to what we have observed in Figure 6, the non-sequential policy cannot express the complicated
dependencies between operation and selection, and is outperformed by the other two policy architectures.
However, within the context of the continual RL experiment, the sequential policy was not able to adapt to the new sets
of tasks and recorded a 0% success rate after the second change in the environment. Conversely, the color equivariant
policy demonstrated the ability to continuously improve its success rate, illustrating its rapid adaptability, which stems
from its architectural design.

4.2 FUTURE DIRECTIONS FOR RL RESEARCH IN SOLVING ARC WITH ARCLE

Based on Section 4.1, where we demonstrated the development and initial success of a PPO-based agent within AR-
CLE, this section aims to show future RL research in addressing the challenges. Inspired by Chollet (2019a), we posit
that an effective ARC solver must possess advanced abstraction and reasoning abilities. Thus, we propose several
research directions using ARCLE (e.g. MAML, GFlowNet, and World Model), with more details in Appendix A.6.

4.2.1 META-RL FOR ENHANCING REASONING SKILLS

ARC is a multi-task few-shot learning problem: the whole dataset consists of multiple tasks, and each task has few
demonstration pairs (“supporting set”) to infer the output of a test input (“query set”). ARCLE is in the identical
problem but in the RL setting. To manage this category of problem, multi-task RL (Wilson et al., 2007) or meta-
RL (Finn et al., 2017) algorithms that foster an agent to experience over a task distribution could be applied. We have
focused on developing ideas with meta-RL rather than multi-task RL as it gives a richer optimization. In this setting,
the meta-training set and the meta-testing set are the training and evaluation sets given in the ARC dataset.

Meta-RL algorithms on ARCLE should be capable of outputting an RL algorithm that rapidly reasons and produces a
policy for each ARC task, without exhaustive searching over actions. The policy is trained to generate valid trajectories
from the input to the output grids simultaneously on multiple demonstration pairs in an ARC task. Then the policy is
applied to the test input grid to generate output. Therefore, Meta-RL endows agents with essential reasoning skills
for ARC’s diverse tasks, enabling them to quickly adapt to new task by autonomously developing learning strategies.
Integrating Meta-RL with ARCLE opens new pathways for researchers to devise techniques that allow AI to effectively
generalize learning across various tasks, thus embodying the ‘learning to learn’ principle.

4.2.2 GENERATIVE MODELS AS SURROGATES FOR REASONING

Generative models, particularly GFlowNet (Bengio et al., 2021), offer a novel approach to tackling the reasoning
challenges presented by ARC. While an agent is equally given a set of grid operations on the ARCLE, many possible
trajectories can lead to a correct answer for an ARC task. Moreover, among demonstration pairs in an ARC task, the
detailed trajectories for each pair are varied, as each pair has its own input grid. GFlowNet establishes its policy as
a generative model that enables the sampling of actions from it, and the probability of sampling is proportional to
the reward-driven objective. Therefore, GFlowNet benefits from not only learning a posterior distribution to include
high-reward modes but also from searching multiple modes of a solution space by leveraging probabilistic reasoning
to generate diverse possible solutions, in the form of a directed acyclic graph (DAG). This supports a GFlowNet policy
to solve the demonstration pairs in one ARC task, although its input grids are different from (but possess the same
rule) one another. Moreover, its ability to identify multiple viable solutions for individual ARC tasks underscores its
utility for data augmentation with correct solutions, further enhancing its value as a research tool in this domain.

9

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

4.2.3 MODEL-BASED RL FOR ABSTRACTION SKILLS

Encoding the demonstration pairs based on the core knowledge is a crucial point in establishing a plan to solve an
ARC task. Model-based RL, particularly World Models might be a solution to support abstraction in tackling the
ARC pairs. Among the ARC tasks, there are dissimilar common rules over all pairs in a task, although, there are
a few categories of core knowledge that a common rule in each task be derived from. Objectness, goal-directness,
arithmetic, geometric, and topology are part of them (Chollet, 2019a), and these can be infused in ARCLE’s actions,
like Move and Rotate operations. Since World Models internalize the environment transitions caused by ARCLE’s
actions to learn an agent on its simulation, it would learn a joint representation of ARCLE’s grid pair and actions
(containing core knowledge). It encourages a controller in World Model agent to utilize flexible neural representation,
rather than hard-coded operations in ARCLE to simulate. In short, World Models would provide neural abstraction
skills of the pairs and operations in ARCLE, which supports a controller to search a rule efficiently on the flexible
representation. Hence, developing agents that can construct and utilize these models is a step towards equipping them
with the necessary abstraction skills for handling both trained and untrained tasks.

4.2.4 FURTHER RESEARCH QUESTIONS

Several research questions would advance while tackling ARC with ARCLE. First, the ARC task does not possess
an explicit task distribution since individual ARC tasks include a unique rule and the current ARC dataset has only a
finite 800 training and evaluation tasks. Categorizing ARC tasks correspondingly to the core knowledge (Moskvichev
et al., 2023) and parameterizing tasks in each category similarly to XLand (Bauer et al., 2023) would be a worthwhile
topic that reinforces meta-RL and multi-task learning more promising methods to solve ARC with broader tasks.

Next, ARCLE’s action space consists of two sub-action spaces: an integer operation and a discrete binary mask
selection. Handling with selection might entail an exponential size of search space: in particular, the size of
DAG with the GFlowNet approaches grows enormously to degrade the efficiency of figuring out the correct output
grid. One probable setting is that we utilized a sequential policy in 4.1.2, maintaining two networks that produce
operation and selection hierarchically. Then this GFlowNet may maintain a DAG of sampling operation
only by considering ARCLE as a probabilistic environment. However, the validity of this method is indeterministic.

Lastly, one might doubt the necessity of World Models in solving ARC to provide richer abstraction. The reason would
be that training agents directly in the environment is more straightforward since the environment’s dynamics are de-
terministic, rather than learning the World Models. Nevertheless, in ARC and ARCLE, there is a significant amount of
auxiliary information to abstract more than a transition of observation: object information and their topology, symme-
try, and so forth. Previous studies have shown that it can capture information such as a hidden gravity parameter in an
environment (Reale & Russell, 2022), and it is expected that additional useful information for ARC can be extracted as
well. One open question brought here is what information a World Model can extract for ARC. In particular, whether
it can disentangle and extract information common to every ARC task (e.g., state transition) and task-specific priors
(e.g., objectness) in an interpretable form is a research question for the future.

5 CONCLUSION

In this paper, we introduced ARCLE, an RL environment designed for the ARC benchmark, using the Gymnasium
library for direct engagement with ARC’s challenges. Our development and application of a PPO-based agent, en-
hanced with auxiliary losses and non-factorizable policies, have demonstrated ARCLE’s possibility of learning and
performance improvements in addressing ARC tasks. In detail, auxiliary losses improved learning outcomes, espe-
cially evident in random settings where the comprehensive application of all proposed strategies yielded the best per-
formance. The success rate in these settings, and the superior outcomes from applying sequential and color-equivalent
policies, underline the importance of strategic operation and selection processes.

These experimental results show advanced RL methodologies—such as meta-RL, generative models, and model-
based RL—to further enhance AI’s reasoning and abstraction abilities. Specifically, meta-RL offers the potential to
refine AI’s reasoning skills by enabling adaptive learning strategies across varied tasks, suggesting a path toward
more generalized intelligence. Generative models, by simulating complex reasoning processes, could serve as links
between data and sophisticated decision-making in ARC. Model-based RL model could strengthen AI’s ability to
distill and apply abstract concepts from complex inputs. Thus, further research using ARCLE could elevate AI’s
learning strategies and expand the boundaries of its current capabilities. We invite the RL community to engage with
ARCLE not just to solve ARC but to contribute to the broader endeavor of advancing AI research. Through such
collaborative efforts, we can unlock new horizons in AI’s ability to learn, reason, and abstract, marking significant
progress in the field.

10

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

ACKNOWLEDGMENTS

This work was supported by the IITP (RS-2023-00216011, No. 2022-0-00311), the National Research Foundation
(RS-2023-00240062), Artificial Intelligence Graduate School Program (No. 2019-0-00079, No. 2019-0-01842), and
GIST (AI-based Research Scientist Project) funded by the Ministry of Science and ICT, Korea.

REFERENCES

Samuel Acquaviva, Yewen Pu, Marta Kryven, Theodoros Sechopoulos, Catherine Wong, Gabrielle Ecanow, Maxwell
Nye, Michael Tessler, and Joshua B. Tenenbaum. Communicating Natural Programs to Humans and Machines. In
NeurIPS, 2022.

James Ainooson, Deepayan Sanyal, Joel P. Michelson, Yuan Yang, and Maithilee Kunda. A Neurodiversity-
Inspired Solver for the Abstraction & Reasoning Corpus (ARC) Using Visual Imagery and Program Synthesis.
arXiv:2302.09425, 2023.

Simon Alford, Anshula Gandhi, Akshay Rangamani, Andrzej Banburski, Tony Wang, Sylee Dandekar, John Chin,
Tomaso Poggio, and Peter Chin. Neural-Guided, Bidirectional Program Search for Abstraction and Reasoning. In
Complex Networks, 2021.

Rim Assouel, Pau Rodriguez, Perouz Taslakian, David Vazquez, and Yoshua Bengio. Object-centric Compositional
Imagination for Visual Abstract Reasoning. In ICLR Workshop on the Elements of Reasoning: Objects, Structure,
and Causality, 2022.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi, Zhaohan Daniel
Guo, and Charles Blundell. Agent57: Outperforming the Atari Human Benchmark. In ICML, 2020.

Andrzej Banburski, Anshula Gandhi, Simon Alford, Sylee Dandekar, Sang Chin, and Tomaso Poggio. Dreaming with
ARC. In NeurIPS Workshop on Learning Meets Combinatorial Algorithms, 2020.

David Barrett, Felix Hill, Adam Santoro, Ari Morcos, and Timothy Lillicrap. Measuring Abstract Reasoning in Neural
Networks. In ICML, 2018.

Jakob Bauer, Kate Baumli, Feryal Behbahani, Avishkar Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang,
Natalie Clay, Adrian Collister, Vibhavari Dasagi, Lucy Gonzalez, et al. Human-Timescale Adaptation in an Open-
Ended Task Space. In ICML, 2023.

Jacob Beck, Risto Vuorio, Evan Zheran Liu, Zheng Xiong, Luisa Zintgraf, Chelsea Finn, and Shimon Whiteson. A
Survey of Meta-Reinforcement Learning. arXiv:2301.08028, 2023.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow Network based Gener-
ative Models for Non-Iterative Diverse Candidate Generation. In NeurIPS, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, and Emmanuel Bengio. GFlowNet Founda-
tions. arXiv:2111.09266, 2023.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
OpenAI Gym. arXiv:1606.01540, 2016.

Natasha Butt, Blazej Manczak, Auke Wiggers, Corrado Rainone, David Zhang, Michaël Defferrard, and Taco Cohen.
CodeIt: Self-Improving Language Models with Prioritized Hindsight Replay. arXiv:2402.04858, 2024.

Giacomo Camposampiero, Loı̈c Houmard, Benjamin Estermann, Joël Mathys, and Roger Wattenhofer. Abstract Visual
Reasoning Enabled by Language. In CVPR, 2023.

François Chollet. On the Measure of Intelligence. arXiv:1911.01547, 2019a.

François Chollet. ARC Testing Interface, 2019b. URL https://github.com/fchollet/ARC/blob/
master/apps/testing_interface.html.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale. In ICLR, 2020.

11

https://github.com/fchollet/ARC/blob/master/apps/testing_interface.html
https://github.com/fchollet/ARC/blob/master/apps/testing_interface.html

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Net-
works. In ICML, 2017.

David Ha and Jürgen Schmidhuber. World Models. arXiv:1803.10122, 2018.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering Diverse Domains through World
Models. arXiv:2301.04104, 2023.

Felix Hill, Adam Santoro, David GT Barrett, Ari S Morcos, and Timothy Lillicrap. Learning to Make Analogies by
Contrasting Abstract Relational Structure. arXiv:1902.00120, 2019.

Michael Hodel. ARC: Where Do We Stand Today?, 2023. URL https://lab42.global/arc-article/.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David Silver, and Koray
Kavukcuoglu. Reinforcement Learning with Unsupervised Auxiliary Tasks. In ICLR, 2016.

Moksh Jain, Emmanuel Bengio, Alex-Hernandez Garcia, Jarrid Rector-Brooks, Bonaventure F. P. Dossou, Chanakya
Ekbote, Jie Fu, Tianyu Zhang, Micheal Kilgour, Dinghuai Zhang, Lena Simine, Payel Das, and Yoshua Bengio.
Biological Sequence Design with GFlowNets. In ICML, 2022.

Moksh Jain, Sharath Chandra Raparthy, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Yoshua Bengio, Santiago
Miret, and Emmanuel Bengio. Multi-Objective GFlowNets. In ICML, 2023.

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. RLBench: The Robot Learning Benchmark
& Learning Environment. RA-L, 2020.

Aysja Johnson, Wai Keen Vong, Brenden M. Lake, and Todd M. Gureckis. Fast and Flexible: Human Program Induc-
tion in Abstract Reasoning Tasks. In CogSci, 2021.

Christian Kauten. An OpenAI Gym Environment for Super Mario Bros, 2018. URL https://github.com/
Kautenja/gym-super-mario-bros.

Subin Kim, Prin Phunyaphibarn, Donghyun Ahn, and Sundong Kim. Playgrounds for Abstraction and Reasoning. In
NeurIPS Workshop on Neuro Causal and Symbolic AI, 2022.

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine. DR3: Value-Based
Deep Reinforcement Learning Requires Explicit Regularization. In ICLR, 2021.

Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Selvatici, Edward Grefenstette, and
Tim Rocktäschel. The Nethack Learning Environment. In NeurIPS, 2020.

Guillaume Lample and Devendra Singh Chaplot. Playing FPS Games with Deep Reinforcement Learning. In AAAI,
2017.

Seungpil Lee, Woochang Sim, Donghyeon Shin, Sanha Hwang, Wongyu Seo, Jiwon Park, Seokki Lee, Sejin Kim,
, and Sundong Kim. Reasoning Abilities of Large Language Models: In-Depth Analysis on the Abstraction and
Reasoning Corpus. arXiv:2403.11793, 2024.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei Nica, Tom Bosc,
Yoshua Bengio, and Nikolay Malkin. Learning GFlowNets from Partial Episodes for Improved Convergence and
Stability. In ICML, 2023.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory Balance: Improved Credit
Assignment in GFlowNets. In NeurIPS, 2022.

Mikołaj Małkiński and Jacek Mańdziuk. A Review of Emerging Research Directions in Abstract Visual Reasoning.
Information Fusion, 2023.

Jacek Mańdziuk and Adam Żychowski. DeepIQ: A Human-Inspired AI System for Solving IQ Test Problems. In
IJCNN, 2019.

Yutaka Matsuo, Yann LeCun, Maneesh Sahani, Doina Precup, David Silver, Masashi Sugiyama, Eiji Uchibe, and Jun
Morimoto. Deep Learning, Reinforcement Learning, and World Models. Neural Networks, 152:267–275, 2022.

12

https://lab42.global/arc-article/
https://github.com/Kautenja/gym-super-mario-bros
https://github.com/Kautenja/gym-super-mario-bros

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

Laura E Matzen, Zachary O Benz, Kevin R Dixon, Jamie Posey, James K Kroger, and Ann E Speed. Recreating
Raven’s: Software for Systematically Generating Large Numbers of Raven-Like Matrix Problems With Normed
Properties. Behavior Research Methods, 42(2):525–541, 2010.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A Benchmark for Language-
Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks. RA-L, 2022.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas, Kanishka Rao,
Dorsa Sadigh, and Andy Zeng. Large Language Models as General Pattern Machines. arXiv:2307.04721, 2023.

Melanie Mitchell, Alessandro B Palmarini, and Arseny Moskvichev. Comparing Humans, GPT-4, and GPT-4V On
Abstraction and Reasoning Tasks. arXiv:2311.09247, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin
Riedmiller. Playing Atari with Deep Reinforcement Learning. arXiv:1312.5602, 2013.

Arseny Moskvichev, Victor Vikram Odouard, and Melanie Mitchell. The ConceptARC benchmark: Evaluating Un-
derstanding and Generalization in the ARC Domain. TMLR, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, et al. Training Language Models to Follow Instructions with Human Feedback.
In NeurIPS, 2022.

Jaehyun Park, Jaegyun Im, Sanha Hwang, Mintaek Lim, Sabina Ualibekova, Sejin Kim, and Sundong Kim. Unraveling
the ARC Puzzle: Mimicking Human Solutions with Object-Centric Decision Transformer. In ICML Workshop on
Interactive Learning with Implicit Human Feedback, 2023.

Yonggang Qi, Kai Zhang, Aneeshan Sain, and Yi-Zhe Song. PQA: Perceptual Question Answering. In CVPR, pp.
12056–12064, 2021.

Christopher Reale and Rebecca Russell. Learning and Understanding a Disentangled Feature Representation for
Hidden Parameters in Reinforcement Learning. arXiv.2211.16315, 2022.

Jerome Revaud, Philippe Weinzaepfel, César De Souza, Noe Pion, Gabriela Csurka, Yohann Cabon, and Martin Hu-
menberger. R2D2: Repeatable and Reliable Detector and Descriptor. arXiv:1906.06195, 2019.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur
Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering Atari, Go, Chess and Shogi by Planning
with a Learned Model. Nature, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy Optimization
algorithms. arXiv:1707.06347, 2017.

Suyeon Shim, Dohyun Ko, Hosung Lee, Seokki Lee, Doyoon Song, Sanha Hwang, Sejin Kim, and Sundong Kim.
O2ARC 3.0: A Platform for Solving and Creating ARC Tasks, 2024. URL https://o2arc.com.

Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. The Hippocampus as a Predictive Map.
Nature Neuroscience, 20(11):1643–1653, 2017.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei,
and Paul F Christiano. Learning to summarize with human feedback. In NeurIPS, 2020.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu, Manuel Goulão,
Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea Pierré, Sander Schulhoff,
Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium, 2023. URL https://github.com/
Farama-Foundation/Gymnasium.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is All You Need. NeurIPS, 30, 2017.

Karel Veldkamp, Hannes Rosenbusch, Luca Thoms, and Claire Stevenson. Solving ARC Visual Analogies with Neural
Embeddings and Vector Arithmetic: A Generalized Method. arXiv:2311.08083, 2023.

13

https://o2arc.com
https://github.com/Farama-Foundation/Gymnasium
https://github.com/Farama-Foundation/Gymnasium

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle Yeo, Alireza
Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al. Starcraft II: A New Challenge for Reinforce-
ment Learning. arXiv:1708.04782, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung, David H
Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster Level in StarCraft II using Multi-Agent
Reinforcement Learning. Nature, 2019.

Ke Wang and Zhendong Su. Automatic Generation of Raven’s Progressive Matrices. In IJCAI, 2015.

Taylor Webb, Zachary Dulberg, Steven Frankland, Alexander Petrov, Randall O’Reilly, and Jonathan Cohen. Learning
Representations That Support Extrapolation. In ICML, 2020.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-Task Reinforcement Learning: A Hierarchical
Bayesian Approach. In ICML, 2007.

Jonas Witt, Stef Rasing, Sebastijan Dumančić, Tias Guns, and Claus-Christian Carbon. A Divide-Align-Conquer
Strategy for Program Synthesis. arXiv:2301.03094, 2023.

Yudong Xu, Elias B. Khalil, and Scott Sanner. Graphs, Constraints, and Search for the Abstraction and Reasoning
Corpus. In AAAI, 2023a.

Yudong Xu, Wenhao Li, Pashootan Vaezipoor, Scott Sanner, and Elias B Khalil. LLMs and the Abstraction and
Reasoning Corpus: Successes, Failures, and the Importance of Object-based Representations. arXiv:2305.18354,
2023b.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning. In CoRL, 2020.

Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. RAVEN: A Dataset for Relational and Analog-
ical Visual Reasoning. In CVPR, 2019.

David W. Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust Scheduling with GFlowNets. In
ICLR, 2023a.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron Courville, Yoshua Bengio, and Ling Pan. Let the Flows Tell:
Solving Graph Combinatorial Optimization Problems with GFlowNets. In NeurIPS, 2023b.

Wenhe Zhang, Chi Zhang, Yixin Zhu, and Song-Chun Zhu. Machine Number Sense: A Dataset of Visual Arithmetic
Problems for Abstract and Relational Reasoning. In AAAI, 2020.

14

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

A APPENDIX

A.1 ABSTRACTION AND REASONING CORPUS (ARC)

With increasing interest in human-like AI, attempts to measure intelligence are being made. However, how can intel-
ligence be quantified? Previous research has defined intelligence as the ability to solve various types of problems with
limited data and experience (Chollet, 2019a).

Iopt
IS, scope = Avg

T∈scope
[ωT,Θ ·Θ

∑
C∈CuroptT

[PC ·
GDΘ

IS,T,C

PIS,T + EΘ
IS,T,C

]]

In the above equation, ωT,Θ · Θ represents the weights, C denotes a single curriculum (training data), PC is the
probability of the curriculum occurring, GDΘ

IS,T,C signifies the generalization difficulty of solved problems, PIS,T
represents prior knowledge, andEΘ

IS,T,C denotes the model’s experience. Note that intelligence gets bigger when prior
knowledge and experience get smaller and generalization difficulty gets bigger, just as the definition of intelligence
proposed above. Therefore, it was argued that benchmarks for evaluating intelligence must meet three criteria: (1)
solvable with limited prior knowledge alone, (2) composed of diverse problem types, and (3) quantitatively measurable.

ARC is a benchmark proposed to quantitatively measure the intellectual capabilities of computers. Each task in ARC
consists of 2–5 demo pairs with both inputs and outputs given, along with one test input grid. The goal is to infer the
solution to the test input grid by deducing rules from the examples. Demo inputs and outputs can vary in size from a
minimum of 1×1 grid to a maximum of 30×30 grid, with each grid capable of being colored with 10 different colors.
One other property of ARC is that it is solvable with just four types of prior knowledge: objectness, goal-directedness,
counting, and geometry and topology (Chollet, 2019a). Thus, ARC is considered a fair intelligence assessment scale
because it requires relatively simple rules and limited prior knowledge to solve tasks, while also necessitating the
inference of various rules and enabling numerical evaluation of whether a task can be solved or not.

One of the key features of ARC is its requirement for high levels of abstraction and reasoning compared to other bench-
marks. Previous research comparing benchmarks for evaluating visual reasoning abilities noted that ARC stands out
because it requires understanding abstract images and rules, evaluates by generating answers, and can present unseen
tasks (Małkiński & Mańdziuk, 2023). Due to these characteristics, as of 2023, state-of-the-art models demonstrate ap-
proximately 30% accuracy (Johnson et al., 2021). When compared to the fact that human performance is around 80%,
it becomes evident how challenging the benchmark is. This is why ARC gathers attention in the pursuit of human-like
AI research.

Table 2: Alignment of Abstract Visual Reasoning tasks with its taxonomy (Małkiński & Mańdziuk, 2023). The prob-
lems and their corresponding benchmarks are cataloged under the following four dimensions of the taxonomy: Input
shapes, Hidden rules, Target tasks, and Specific challenges.

Dataset Geometric
Shapes

Abstract
Shapes

Explicit
Rules

Abstract
Rules Classify Generate Domain

Transfer Extrapolate

ARC (Chollet, 2019a) ✓ ✓ ✓ ✓ ✓

Sandia (Matzen et al., 2010) ✓ ✓ ✓

Synthetic (Wang & Su, 2015) ✓ ✓ ✓

G-set (Mańdziuk & Żychowski, 2019) ✓ ✓ ✓

RAVEN (Zhang et al., 2019) ✓ ✓ ✓ ✓

PGM (Barrett et al., 2018) ✓ ✓ ✓ ✓ ✓

Hill et al. (Hill et al., 2019) ✓ ✓ ✓ ✓ ✓

G1-set (Mańdziuk & Żychowski, 2019) ✓ ✓ ✓ ✓

S1-set (Mańdziuk & Żychowski, 2019) ✓ ✓ ✓ ✓

MNS (Zhang et al., 2020) ✓ ✓ ✓

VAEC (Webb et al., 2020) ✓ ✓ ✓ ✓

DOPT (Webb et al., 2020) ✓ ✓ ✓ ✓

15

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

A.2 SIGNIFICANCE OF SOLVING ARC USING REINFORCEMENT LEARNING

Just as ARC has significant implications for the field of reinforcement learning (RL), RL also holds great importance
for the ARC and Artificial General Intelligence (AGI) research areas. This is because RL methodology 1) has char-
acteristics suitable for solving ARC compared to other approaches, 2) has high possibility of leading to research on
human reasoning, which is the aim of ARC, and 3) facilitates the utilization of research resources that have been
employed in other fields.

The Suitability of RL for Solving ARC RL possesses suitable characteristics for solving ARC. ARC can be un-
derstood as a program synthesis benchmark that involves composing complex solutions from simple skills (Chollet,
2019a). Previous attempts to solve ARC support this claim. Conventional deep learning approaches like autoencoders
show performance below 10% (Veldkamp et al., 2023), as they are specialized in learning a single skill for solving a
specific task. Similarly, large language models that have achieved success across various domains also exhibit around
15% performance (Mirchandani et al., 2023), likely due to their limitation in finding combinations of step-by-step
skills. The highest performance has been achieved by program synthesis methods that search for combinations of
human-designed Domain Specific Languages (DSLs) (Hodel, 2023). While these results support that ARC indeed
requires program synthesis components, the current methods using manually designed DSLs are limited in their vul-
nerability to unseen tasks and human bias. On the other hand, RL is a research field specialized in solving complex
problems by composing simple actions. Methods like MuZero (Schrittwieser et al., 2020) have successfully found
effective action combinations in environments like the game of Go. The strong compositional capability makes RL
more suitable for solving ARC than other approaches.

Potential for Expanding into Human Reasoning Research RL approach to solving ARC is expected to provide
a significant foundation for theoretical inquiries into AGI, as RL methodologies are similar to how humans solve
tasks. While there have been several attempts to solve ARC, existing methods differ from the strategies typically
employed by intelligent agents for general problem-solving. Recent research methods, spearheaded by large language
models, have been argued to diverge from human reasoning processes (Mitchell et al., 2023). In contrast, RL has
consistently yielded findings suggesting its biological similarity to human reasoning processes (Matsuo et al., 2022;
Stachenfeld et al., 2017). Additionally, the use of intuitive rewards and policies allows for a transparent examination
and approach to tasks compared to other machine learning methods. This transparency in understanding how actual
reasoning occurs is one of the crucial characteristics that enables research into the nature of reasoning. Therefore,
research on ARC through RL will not only aim to solve the tasks but also present an opportunity to gain insights into
how humans reason from a biological perspective.

Acquisition of diverse research resources ARC is a benchmark created in 2019, and its solution methods have
not been deeply studied yet. Supporting RL environment that can solve ARC has the effect of easily introducing
resources from other machine learning research fields into ARC. RL allows the application of deep learning models
and techniques developed in other fields such as vision and natural language processing as its policy function, making
it advantageous for utilizing existing resources. These characteristics will further facilitate the application of recently
spotlighted methods such as meta-learning, continual learning, and multi-task learning to ARC. Consequently, rather
than being limited to finding RL-specific solutions, it provides a great opportunity to test various methodologies and
resources together.

Despite these advantages, efforts to tackle ARC tasks using RL have been limited, mainly due to a lack of appropriate
RL environments. ARCLE maintains the inherent difficulty of ARC that requires solving general tasks with minimal
prior knowledge and experience while preserving the strength of the RL approach in its similarity to human reasoning
by incorporating the actions humans use when solving ARC. Furthermore, the action space consisting of low-level
actions and the environment that allows for various variations offer high potential for utilization in meta-learning and
continual learning research. Owing to these characteristics, ARCLE will not only contribute to the field of RL research
but also make significant contributions to research on ARC and reasoning intelligence.

16

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

A.3 OBJECT-ORIENTED ARC (O2ARC) WEB INTERFACE

Object-Oriented ARC (O2ARC) is a web interface that allows humans to directly solve ARC tasks and collect the
process of solving them (Kim et al., 2022; Shim et al., 2024)4, an improvement upon the initial testing web inter-
face developed by Chollet (2019b). Initially, Chollet’s testing web interface featured only a basic version involving
coloring. However, the version of O2ARC has progressively improved to include object-oriented actions such as move-
ment, rotation, and mirroring. Since actions represent the most intuitive low-level actions conceivable by humans, the
sequence of actions (traces) could be used as a dataset reflecting human cognitive processes. The most recent version
of O2ARC allows for the collection of traces solved by humans and also includes the ability to create tasks directly,
thus evolving into a tool that can aid in the development of general artificial intelligence capable of mimicking human
cognitive processes using ARC. The dataset collecting human traces is valuable in the research and development of
artificial intelligence capable of human-like thinking.

Previous research has been conducted on whether learning from human traces can solve tasks (Park et al., 2023). This
research demonstrated that with a sufficient number of traces solved by humans, it becomes feasible to solve ARC
tasks by reflecting human solutions, thereby showcasing the potential of offline reinforcement learning. In line with
this, ARCLE has been developed by integrating the actions of O2ARC to investigate whether an agent can address
ARC tasks like human thinking. While O2ARC has one of its strengths in collecting human traces, ARCLE has the
advantage of being able to train agents using the actions same as O2ARC. Therefore, ARCLE can be seen as having
transformed O2ARC into a reinforcement learning environment for solving ARC tasks by agents. In Section A.6, we
explore the possibility of using alternative RL algorithms to solve ARC tasks.

Figure 8 presents the interface for solving ARC tasks in O2ARC. As depicted, The left side part “See the original
pairs” displays demo pairs corresponding to the task, while the center provides the test input grid for the task. Users
infer common rules from these examples to guess the appropriate answer for the given input. The right side features a
grid space labeled “What should be the result” where users input their answers. Additionally, a palette on the far right
offers a selection of 10 colors for ARC. Users can use O2ARC’s functionalities to color pixels, select objects, and
perform actions such as rotation or copying and pasting. If necessary, they can input integer numbers into width and
height cells to resize and submit the correct answer. The detail about the actions of O2ARC and ARCLE is explained
in Section A.4.

Figure 8: O2ARC Solve page. The left side shows demo input and output grid pairs, the center demonstrates the test
input grid, and the right side consists of the result grid and available actions.

4https://o2arc.com

17

https://o2arc.com

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

A.4 EVERY OPERATION INCLUDING ARCLE

Figure 9 shows all the operations currently present in ARCLE. As we mentioned before, the environments in
ARCLE support only a subset of operation, tailored to their respective purposes. For instance, the simplest envi-
ronment, ARCRawEnv, includes every Coloring operation and two Criticals (ResizeGrid and Submit).

Figure 9: Every operations in ARCLE (version 0.2.5).

The operations in the ARCLE actions component are categorized into five groups: Coloring, Flood Fill, Object-
Oriented, Clipboard, and Critical operations. Coloring operations (Color0–Color9) change the color of selected
pixels specified in selection. Flood Fill (FloodFill0–FloodFill9) alters the color of multiple pixels sharing
the same color of selection pixels, as depicted in the right side of Figure 9. Two groups each consist of ten
operations corresponding to ten distinct colors, defined in the ARC.

Object-oriented operations refers to Move, Rotate, and Flip added to O2ARC, by regarding pixels within the grid
as object(s). MoveU, MoveD, MoveR, and MoveL shifts selected pixels in the specified direction (up, down, right, left).
Rotate90, Rotate180, Rotate270 turn them by 90, 180, or 270 degrees counterclockwise respectively. FlipH,
FlipV, FlipD0, FlipD1 mirror object(s) horizontally, vertically, or diagonally (major and minor diagonal). If
the selection is non-rectangular, object-oriented operations first calculate the bounding box of selection and
operate in advance. Black pixels (zero-valued) are considered blank or transparent pixels, therefore those pixels do not
affect other pixels by overlapping while performing sequences of object-oriented operations.

Clipboard operations involves the clipboard of the state, clip, copying from selected and pasting to the grid. CopyI
copies pixels from test input grid (input in state space) specified by selection of action. On the other hand,
CopyO copies pixels from the editing grid (grid of the state). Paste overlay the pixels of the clip state, on the
editing grid (grid of the state). Pasting location is specified by the left-top corner of the bounding box of selection
binary array.

Critical operations significantly modify the grid; every operation affects the editing grid by replacing the input grid
(CopyInput), clearing its pixels to black (ResetGrid), changing the grid’s size (ResizeGrid), and cropping
the grid (CropGrid). ResizeGrid changes the grid’s height and width as indices of bottom-right pixels of the
selection. CropGrid directly puts selected pixels into grid, with resizing grid as a bounding box of selected
pixels. Lastly, Submit operation, highlighted in purple, submits the current editing grid to compare with the answer
of the assigned ARC task.

18

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

A.5 TWO-LAYER MECHANISM OF OBJECT-ORIENTED ACTIONS

The actions implemented in ARCLE, such as Move, Rotate, Flip, are object-oriented actions that act on the pixels
selected by the agent, i.e., the objects. Simplifying the implementation of these actions to merely move the selected
pixels could lead to issues as illustrated in Figure 10.

Figure 10: The edge case with serial simple Move actions.

Figure 10 demonstrates the issue with a simplistic implementation of the Move action, depicted through the process of
an agent performing two Move actions. In the first Move action, the gray pixels (object) included in the selection
move upwards, overlapping with the yellow pixels directly above the object, and the pixels vacated by the object’s
movement are filled with the background color, black. When the gray object is moved back down in the second Move
action, the pixels previously painted with the background color during the first move overlap with the object, and
similarly, the vacated pixels are filled with the background color, black. As a result, the yellow pixels that overlapped
with the object during the first Move action are changed to the background color, black. Thus, a simple implementation
of object-oriented actions can lead to the disappearance of pixels that overlap as the object moves.

To prevent information loss during the movement of objects, we implemented ARCLE’s object-oriented actions using
a two-layer mechanism. This approach is inspired by the way people typically lift and move objects, dividing the state
space’s grid into an object layer, which includes currently selected pixels, and a background layer, which com-
prises the rest of the pixels. Actions are performed on the object layer, which is then placed over the background
layer to create the final grid. This two-layer mechanism for object-oriented actions utilizes variables stored in the
object states dictionary within the state space, and the detailed operation process is as Figure 11.

Figure 11: The edge case with serial two-layer mechanism Move actions.

At the start of an object-oriented action, the active variable in the dictionary is set to 1, and the pixels designated
by the agent’s selection in the action space are stored in object, while the rest are stored in background.
The top-left coordinate of the bounding box surrounding the object is saved in object pos. If the action per-
formed is not object-oriented, the active variable is set to 0, and the object is reset. When active is 1, mean-
ing an object-oriented action was performed previously, and the agent performs another object-oriented action, only
object, object pos, or object dim change depending on the type of action, while background remains
unchanged. Upon completing an object-oriented action, background and object merge using the information
from object pos, and the result is stored in grid. For example, in the two-layer mechanism, the Move action is
implemented such that only the location of the object changes, altering only the value of object pos during the
action, while the rest of the variables in the dictionary, like object or object dim, do not change.

19

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

A.6 OTHER RL ALGORITHMS TRIALS

For future convenience of application, we provide three types of reinforcement learning models using ARCLE. These
include Meta-RL, which has shown success in solving various types of tasks, GFlowNet, which excels in exploring
wide search spaces, and World Model, which has strengths in analyzing complex domains. Such applications demon-
strate that ARCLE can be utilized not only for standard reinforcement learning algorithms that demand strict reward
and action specifications.

A.6.1 META-RL ALGORITHMS

Loop

Tasks

Task

Initialize
Policy as

Meta-policy

Train Policy
 times

Environment

Create Parallel
Environments

Sample Tasks

Update Meta-policy

Episode 1 Episode

Rollout Experiences
on Demo Pairs with Augment Demo Pairs

(rotate, change colors)

Collect
Test Episodes

Sample Initial State at the start of new episode

Demo Pairs Test Pair

Demo Pool
(initial state dist.)

Test Trained Policy
on the Test pair

Figure 12: Learning Procedure of MAML integrated with ARCLE to solve ARC.

Model-Agnostic Meta-Learning We introduce the architecture of MAML (Finn et al., 2017), the most famous
parameterized policy gradient (PPG) (Beck et al., 2023) meta-RL algorithm, integrated with ARCLE follows the
training process as described in Figure 12. At time t, when a subset of the various tasks (T1, · · · , TN) stored in
ARCLE is sampled, it generates augmented demo pairs Di

t from the demo pair available for task T i
t . Each inner loop

holds a policy πϕt
created with the current initial parameter ϕt, and trains by sampling and rolling out augmented

demos (Di
t). The updated parameter ϕit+1 during the training process is obtained as per the following Equation 1.

ϕit+1 = ϕt − α∇ϕt
LT i

t
(πϕt

) (1)

Afterward, in the stage known as meta-testing, attempts are made to solve each task using the policy (πϕt) from
each inner loop. The outcomes of these attempts are then utilized to update the parameters of the meta policy, by the
Equation 2.

ϕt+1 = ϕt − β∇ϕt

∑
T i
t ∼p(T)

LT i
t
(πϕi

t+1
) (2)

Expected Usage Meta-RL is a type of meta-learning where conventional RL is used in the inner loop. This approach
allows us to view the ARC task from a meta-learning perspective, where the goal is to train models on tasks with min-
imal information and then evaluate them on new tasks. If we use models capable of effectively learning an individual
ARC task in the inner loop, like the PPO-based model proposed in this study, meta-learning will enable these models
to learn how to solve a variety of ARC tasks. Consequently, such trained models will also gain the ability to solve
untrained tasks.

However, there are concerns that the inner loop of meta-RL may struggle to learn effectively due to ARC tasks being
composed of very limited information (3–5 demo grid pairs and a test input grid). Additionally, the vast action space
of ARC could also hinder learning. To address these issues, RL techniques such as offline meta-RL or hindsight
experience replay might be necessary. Particularly for offline meta-RL, a buffer containing a large number of trial
records might be required. Collecting such records through an interface like O2ARC or utilizing methods such as data
augmentation could be potential solutions.

20

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

A.6.2 GENERATIVE FLOW NETWORK

Generative Flow Network Generative Flow Network (GFlowNet) is a kind of RL algorithm and generative model
that can generate desirable trajectories (solutions) using the concept of flow networks (Bengio et al., 2021; 2023). In
GFlowNet, there is a proportional relationship between reward and flow, allowing it to be trained with rewards. A
reward is used to train the flow using specific loss function (Bengio et al., 2021; Malkin et al., 2022; Madan et al.,
2023) to match flow. GFlowNet generates sequences of actions based on the actions defined in the environment,
thereby reaching the terminal state. Through this process, it can generate various solutions with high rewards. The
author said that GFlowNet is similar to the human recognition process in terms of stacking thoughts. Solving the ARC
task needs human-like AI, thus, the concept of GFlowNet could be a suitable approach for addressing ARC.

Figure 13: A simple architecture of GFlowNet interacting with ARCLE to find paths (solutions or modes). At each
iteration, the GFN generates a succession of actions up to the terminal state, exploring the solution. The color saturation
of the arrows indicates high and low flow (deeper color indicates higher flow). In our experiments, we were able to
guarantee the DAG by coloring the actions one pixel at a time, and we colored the most desirable solution yellow to
show that the answer can be found this way.

Expected Usage ARCLE operates within a discrete action space. Concurrently, GFlowNet, by learning the dis-
tribution of actions via a policy network, facilitates the generation of actions while transferring the responsibility for
generating next states to ARCLE. This approach enables a transition-based training methodology for generating action
sequences. A crucial element of training GFlowNet is the establishment of a Directed Acyclic Graph (DAG) structure,
essential for significantly reducing the search space and enhancing learning efficiency. Applying ARCLE to GFlowNet
in its basic form could lead to the creation of cycles, thus failing to guarantee DAG structure. A practical method for
ensuring a DAG structure involves sequentially coloring one pixel at a time, achievable through a specialized subclass
of ARCLE focused on such actions. Considering a H × W grid size, this leads to a theoretical maximum search
space of 10H×W . Given GFlowNet’s proven efficacy in navigating extensive search spaces in graph combinatorial
optimization challenges, (Zhang et al., 2023b), it is expected to outperform other competing algorithms.

The proposed approach aims to construct a DAG to investigate potential solutions, though this methodology mirrors
human cognitive processes remains uncertain. Furthermore, even if this method could guarantee DAG structure, there
still remains a vast search space of 10n×n. Since this strategy yields only one solution, it is harder to find an optimal
path in contrast to other applications of GFlowNet where solutions encompass a spectrum of possibilities across
various paths (Jain et al., 2022; 2023; Zhang et al., 2023a;b). Therefore, for GFlowNet’s effective application in
solving ARCLE challenges, it is imperative to not only fully utilize ARCLE’s actions but also to devise a strategy
for DAG construction. Finding a proper way to build a DAG structure could reduce search space significantly and
guarantee training effectively.

21

Published at 3rd Conference on Lifelong Learning Agents (CoLLAs), 2024

A.6.3 WORLD MODEL

(a) An World Model Architecture (b) An Actor Critic Architecture

Figure 14: An architecture of DreamerV3 (Hafner et al., 2023), an advanced version of World Model, solving ARC.

World Model World Model (Ha & Schmidhuber, 2018) is a model-based reinforcement learning algorithm designed
to predict models in complex domains where it’s difficult to create state spaces and transition functions. To achieve
this, the World Model consists of three parts: vision, memory, and controller. Vision is responsible for generating a
latent state from given visual images. For instance, in games like Minecraft, where 3D spatial information, items, and
various in-game statuses are included in the image, vision transforms it into a vector representing the current state.
Memory stores information to predict the next state using the latent state provided by vision. It’s known to store prior
knowledge inherent to the environment, such as gravity or friction, in vector form. After the learning process, vision
and memory function as a kind of model that predicts states and transitions. The controller part is responsible for
generating appropriate actions using the given model.

ϕt+1 = ϕt − α∇ϕt
Ldynamics(pϕt

(zt|xt)), qϕt
(zt|ht)) (3)

In the above equation, pϕt
(zt|xt) represents vision function which makes latent state zt given input image xt, whereas

qϕt
(zt|ht) represents memory function which makes latent state zt given transition prediction ht. Subsequently, up-

dated vision and memory are utilized to train the controller using the latent state zt and transition prediction ht provided
by each, as follows.

θt+1 = θt − β∇θtLcontroller(πθt) (4)

Expected Usage The lack of knowledge about which information to extract from input and output grids, as well
as the necessary prior knowledge for solving specific types of tasks, is a significant challenge in solving ARC. The
Vision part of the World Model excels at extracting important information from visual inputs, while the Memory part
is strong at extracting prior knowledge. Therefore, in future ARC research, the architecture of the World Model is
expected to play a crucial role. To facilitate future research efforts, this study provides a simple implementation of
DreamerV3(Hafner et al., 2023), a version of the World Model, applied to ARC.

Furthermore, existing research on World Models has predominantly focused on scenarios where a single agent per-
forms a single task. However, to address the ARC problem, which involves a diverse array of tasks, it might be neces-
sary to consider approaches that incorporate pretraining techniques or apply meta-learning methods. These strategies
could potentially enable an agent to adapt to and perform multiple tasks by leveraging prior knowledge or learning
how to learn across different tasks.

22

	Introduction
	Related Works
	Solving ARC
	RL environments similar to ARCLE

	ARCLE: ARC Learning Environment
	Actions
	States & Observations
	Rewards
	Source Code
	API & Sample Usage

	ARCLE Benchmarks
	Solving ARC with a given answer: handling the large discrete state-action space
	Learning better representation through auxiliary loss functions
	Non-factorizable policy architecture
	ARCLE as a Continual RL Environment

	Future Directions for RL Research in Solving ARC with ARCLE
	Meta-RL for Enhancing Reasoning Skills
	Generative Models as Surrogates for Reasoning
	Model-Based RL for Abstraction Skills
	Further Research Questions

	Conclusion
	Appendix
	Abstraction and Reasoning Corpus (ARC)
	Significance of Solving ARC using Reinforcement Learning
	Object-Oriented ARC (O2ARC) Web Interface
	Every operation including ARCLE
	Two-Layer Mechanism of Object-Oriented Actions
	Other RL Algorithms Trials
	Meta-RL Algorithms
	Generative Flow Network
	World Model

