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Abstract. In this paper, we introduce SurvRev, a next-generation
revisit prediction model that can be tested directly in business. The
SurvRev model offers many advantages. First, SurvRev can use partial
observations which were considered as missing data and removed from
previous regression frameworks. Using deep survival analysis, we could
estimate the next customer arrival from unknown distribution. Second,
SurvRev is an event-rate prediction model. It generates the predicted
event rate of the next k days rather than directly predicting revisit inter-
val and revisit intention. We demonstrated the superiority of the SurvRev
model by comparing it with diverse baselines, such as the feature engi-
neering model and state-of-the-art deep survival models.
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1 Introduction

Predicting customer revisit in offline stores has been feasible because of the
advancement in sensor technology. In addition to well-known but difficult-to-
obtain customer revisit attributes, such as purchase history, store atmosphere, cus-
tomer satisfaction with products, large-scale customer motion patterns captured
via in-store sensors are effective in predicting customer revisit [9]. Market leaders,
such as Alibaba, Amazon, and JD.com, opened the new generation of retail stores
to satisfy customers. In addition, small retail chains are beginning to apply third-
party retail analytics solutions built upon Wi-Fi fingerprinting and video content
analytics to learn more about their customer behavior. For small stores that have
not yet obtained all the aspects of customer behavior, the appropriate use of sensor
data becomes more important to ensure their long-term benefit.

By knowing the visitation pattern of customers, store managers can indirectly
gauge the expected revenue. Targeted marketing can also be available by knowing
the revisit intention of customers. By offering discount coupons, merchants can
encourage customers to accidentally revisit their stores nearby. Moreover, they
can offer a sister brand with finer products to provide new shopping experiences
to customers. Consequently, they can simultaneously increase their revenue and
satisfy their customers. A series of previously conducted works [9,10] introduced
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a method of applying feature engineering to estimate important attributes for
determining customer revisit. The proposed set of features was intuitive and easy
to reproduce, and the model was powered by widely known machine learning
models, such as XGBoost [2].

However, some gaps did exist between their evaluation protocol and real appli-
cation settings.Although their approach could effectivelyperformcustomer-revisit
prediction, in downsampled and cross-validated settings, it was not guaranteed to
work satisfactorily in imbalanced visitations with partial observations. In the case
of class imbalance, the predictive power of each feature might disappear because
of the dominance of the majority label, and such small gaps might result in further
adjustment in actual deployment. In addition, in a longitudinal prediction setup,
the cross-validation policy results in implicit data leakage because the testing set
is not guaranteed to be collected later than the training set.

By evaluating the frameworks using chronologically split imbalanced data,
the gap between previously conducted works and real-world scenarios seemed to
fill. However, an unconsidered challenge, i.e., partial observations, occurred after
splitting the dataset by time. Partial observations occur for every customer, as
the model should be trained up to certain observation time. In the case of typical
offline check-in data, most customers are only one-time visitors for a certain point
of interest [9]. Therefore, the amount of partial observations is considerably large
for individual store level. However, previously conducted works [9,10] ignored
partial observations, as their models required labels for their regression model,
resulting in not only significant information loss but also biased prediction, as
a model is trained using only revisited cases. In this study, we adopt survival
analysis [18] to counter the aforementioned instances.

A practical model must predict the behavior of both partially observed cus-
tomers as well as new visitors who first appear during the testing period. Pre-
dicting the revisit of both censored customers and new visitors simultaneously is
very challenging, as the characteristics, such as the remaining observation time
and their visit histories, of both of them inherently differ from each other. In
a usual classification task, it is assumed that the class distributions between
training and testing sets are the same. However, the expected arrival rate of new
visitors might be lower than that of the existing customers, as the former did not
appear during the training period [16]. To understand the revisit pattern using
visitation histories with irregular arrival rates, we use deep learning to be free
from arrival rate λ and subsequently, predict quantized revisit rates.

These abovementioned principles associated with a practical model might be
crucial in applied data science research, and they offer considerable advantages
compared with those offered by previously conducted works, which compromise
difficulties. In the following section, we introduce our principled approach, i.e.,
SurvRev, to resolve customer-revisit prediction in more realistic settings.
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Customer-Revisit Prediction [10] : Given a set of visits Vtrain = {v1, . . . , vn} with
known revisit intentions RVbin(vi) and revisit intervals RVdays(vi), where

vi ∈ Vtrain, RVbin(vi) ∈ {0, 1}, and RVdays(vi) =

{
R>0, if RVbin(vi) = 1

∞, otherwise,

build a classifier C that predicts R̂V bin(vj) and R̂V days(vj) for a new visit vj .

2 Deep Survival Model (SurvRev)

In this section, we introduce our customer-revisit prediction approach. We named
our model SurvRev, which is the condensed form of Survival Revisit predictor.

2.1 Overall Architecture

Fig. 1 depicts the overall architecture of our SurvRev model, which is designed
as the combination of the following two modules: a low-level visit encoder (see
Sect. 2.2) and high-level event-rate predictor (see Sect. 2.3). The low-level visit
encoder learns hidden representations from each visit, and the high-level event-
rate predictor estimates the event rates for the future by considering past infor-
mation. The final output of the high-level module is a set of predicted revisit
rates for the next k days. To calculate the loss function, we perform some calcu-
lations for converting event rates to revisit probability at time t and the expected

Revisit labels

Train period Test period

?

LSTMs LSTMs LSTMs

FC Layers

(False, 120 days)

Rates for next 365 days

0

Low-level 
visit encoder

event-rate predictor
High-level

Loss minimiza on

120 days

Fig. 1. Architecture of our SurvRev model. A training case is depicted for a censored
customer who has not revisited for 120 days. The current visit data and histories of the
customer are passed through low-level encoders. Subsequently, the learned represen-
tations pass through a high-level event-rate predictor that comprises long short-term
memories (LSTMs) and fully connected (FC) layers. The output comprises the revisit
rates for the next k days. Upon passing through several conversion steps, the model
loss is minimized. (Color figure online)
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revisit interval (see Sect. 2.4). The entire model is trained using four different
types of loss functions (see Sect. 2.5), which are designed to optimize prediction
results in terms of various metrics.

2.2 Low-Level Visit Encoder

Fig. 2 depicts the architecture of the low-level visit encoder. In the encoder,
the main area sequence inputs go through three consecutive layers and are,
subsequently, combined with auxiliary visit-level inputs, i.e., user embeddings
and handcrafted features. We first introduce three-tiered main layers for the area
inputs, followed by introducing the process line of the auxiliary visit-level inputs.

Fig. 2. Low-level visit encoder of the SurvRev model.

Processing Area Sequences: The first layer that is passed by an area
sequence is a pretrained area embedding layer to obtain the dense represen-
tation for each sensor ID. We used the pretrained area and user embedding
results via Doc2Vec [12] as initialization. The area embedding is concatenated
with the dwell time, and, subsequently, it goes through a bidirectional LSTM (Bi-
LSTM) [17], which is expected to learn meaningful sequential patterns by look-
ing back and forth. Each LSTM cell emits its learned representation, and the
resulting sequences pass through a one-dimensional convolutional neural net-
works (CNN) to learn higher-level representations from wider semantics. We
expect CNN layers to automate the manual process of grouping the areas for
obtaining multilevel location semantics, such as category or gender-level semen-
tics [10]. In business, the number of CNN layers can be determined depending
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on the number of meaningful semantic levels that the store manager wants to
observe. The output of the CNN layer goes through self-attention [1] to examine
all the information associated with visit. Using the abovementioned sequence of
processes, SurvRev can learn the diverse levels of meaningful sequential patterns
that determine customer revisits.

Adding Visit-Level Features: Here, we concatenate a user representation
with an area sequence representation and, subsequently, apply FC layers with
ReLU activation [4]. We can implicitly control the importance of both the rep-
resentations by changing the dimensions for both the inputs. Finally, we con-
catenate selected handcrafted features with the combination of user and area
representations. The handcrafted features contain the summary of each visit
that may not be captured using the boxed component depicted in Fig. 2. The
selected handcrafted features are the total dwell time, average dwell time, number
of areas visited, number of unique areas visited, day of the week, hour of the day,
number of prior visits, and previous interval. We applied batch normalization [7]
before passing the final result through the high-level module of SurvRev.

2.3 High-Level Event-Rate Predictor

The blue box in Fig. 1 depicts the architecture of the high-level event-rate pre-
dictor. Its main functionality is to consider the histories of a customer by using
dynamic LSTMs [6] and predict the revisit rate for the next k days. For each
customer, the sequence of outputs from the low-level encoder becomes the input
to the LSTM layers. We use dynamic LSTMs to allow sequences with variable
lengths, which include a parameter to control the maximum number of events
to consider. The output from the final LSTM cell goes through the FC layers
with softmax activation. We set the dimension k of the final FC layer to be 365
to represent quantized revisit rates [8] for the next 365 days. For convenience, we
refer to this 365-dim revisit rate vector as λ̂ = [λ̂t, 0 ≤ t < k, t ∈ N], where each
element λ̂t indicates a quantized revisit rate in a unit-time bin [t, t + 1).

2.4 Output Conversion

In this section, we explain the procedure to convert the 365-dim revisit rate λ̂ to
other criteria, such as probability density function, expected value, and comple-
mentary cumulative distribution function (CCDF). The aforementioned criteria
will be used to calculate the diverse loss function in Sect. 2.5. Remember that
R̂V days(v) denotes the predicted revisit interval of visit v, meaning that SurvRev
expects a revisit will occur after R̂V days(v) from the time a customer made a
visit v to a store.

1. Substituting the quantized event rate λ̂ from 1 gives the survival rate, i.e.,
1− λ̂, which denotes the rate at which a revisit will not occur during the next
unit time provided that the revisit has not happened thus far. Therefore,
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the cumulative product of the survival rate with time gives the quantized
probability density function as follows:

p(R̂V days(v) ∈ [t, t + 1)) = λ̂t ·
∏

r<t

(1 − λ̂r). (1)

2. Subsequently, the predicted revisit interval can be represented as a form of
expected value as follows:

R̂V days(v) =
k∑

t=0

(t + 0.5) · p(R̂V days(v) ∈ [t, t + 1)). (2)

3. On the basis of the last time of the observation period, it can be predicted
whether a revisit is made within a period, which is denoted by R̂V bin(v).
Here, we define a suppress time tsupp(v) = tend − tv, where tv denotes the
visit time of v and tend the time when the observation ends. We used the
term suppress time to convey that the customer suppresses his or her desire
to revisit until the time the observation ends by not revisiting the store. Thus,

R̂V bin(v) =

{
1 if R̂V days(v) ≤ tsupp(v)
0 if R̂V days(v) > tsupp(v).

(3)

4. Calculating the survival rate using suppress time gives CCDF and CDF, both
of which will be used to compute the cross-entropy loss. When tsupp(v) is a
natural number, the following holds:

p(R̂V days(v) ≥ tsupp(v)) =
∏

r<tsupp(v)

(1 − λ̂r), (4)

p(R̂V days(v) < tsupp(v)) = 1 −
∏

r<tsupp(v)

(1 − λ̂r). (5)

2.5 Loss Functions

We designed a custom loss function to learn the parameters of our SurvRev
model. We defined four types of losses—negative log-likelihood loss, root-mean-
squared error (RMSE) loss, cross-entropy loss, and pairwise ranking losses. The
prefixes Luc , Lc , and Luc−c mean that each loss is calculated for uncensored,
censored, and all samples, respectively.

Negative Log-likelihood Loss Luc−nll : For performing model fitting, we
minimize the negative log-likelihood of the empirical data distribution. We com-
pute Luc−nll only for those uncensored samples v in the training set that have
a valid value of the next revisit interval, i.e., ∀v : RVdays(v) ∈ R>0. For step-
by-step optimization, we design five cases of Luc−nll by changing the interval
parameters: Luc−nll−season , Luc−nll−month , Luc−nll−week , Luc−nll−date , and
Luc−nll−day , for season, month, week, date, and day, respectively. Among these
five variants, we introduce Luc−nll−season and Luc−nll−month by considering the
case wherein RVdays(v) = 105.
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– Luc−nll−season : For some applications, e.g., clothing, it is essential to capture
seasonal visitation patterns. Thus, if the customer revisited within 105 days,
the model learns to increase the likelihood of the interval RVdays(v) ∈
[90, 180).

– Luc−nll−month : Similarly, the model learns to increase the likelihood of
monthly interval RVdays(v) ∈ [90, 120).

Depending on the task domain, the losses to be considered will be slightly dif-
ferent. Therefore, the final Luc−nll can be a weighted sum of five variants.

RMSE Loss Luc−rmse : The second loss is the RMSE loss which minimizes
the error between the predicted revisit interval R̂V days(v) and actual interval
RVdays(v). The term Luc−rmse minimizes the error of the model for the case of
uncensored samples. One might consider the RMSE loss a continuous expansion
of negative log-likelihood loss.

Cross-Entropy Loss Luc−c−ce : Using the cross-entropy loss, one can mea-
sure the performance of the classification model whose output is a probabil-
ity value between 0 and 1. The cross-entropy loss decreases as the predicted
probability converges to the actual label. We separate Luc−c−ce into Luc−ce and
Lc−ce denoting the partial cross-entropy value of the uncensored and censored
sets, respectively.

Luc−c−ce = Luc−ce + Lc−ce, (6)

Luc−ce = −
∑

v∈Vuncensored

log p(R̂V days(v) ≤ tsupp(v)), (7)

Lc−ce = −
∑

v∈Vcensored

log p(R̂V days(v) > tsupp(v)). (8)

Pairwise Ranking Loss Luc−c−rank : Motivated by the ranking loss func-
tion [13] and c-index [14], we introduce the pairwise ranking loss to compare the
orderings between the predicted revisit intervals. This loss function fine-tunes
the model by making the tendency of the predicted and the actual intervals
similar to each other. The loss function Luc−c−rank is formally defined using the
following steps.

1. First, we define two matrices P and Q as follows:

Pij = max(0,−sgn(R̂V days(vj) − R̂V days(vi))),
Qij = max(0, sgn(RVdays(vj) − RVdays(vi))).

(9)

For a censored visit v, we use the suppress time tsupp(v) instead of the actual
revisit interval RVdays(v) to draw a comparison between uncensored and cen-
sored cases.

2. The final pairwise ranking loss is defined as follows:

Luc−c−rank =
∑

i,j: vi∈Vuncensored

Pij · Qij . (10)
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By minimizing Luc−c−rank , our model encourages the correct ordering
of pairs while discouraging the incorrect one. Both the constraint vi ∈
Vuncensored and variable Qij remove the influence of incomparable pairs, such
as vi and vj with RVdays(vi) = 3 and tsupp(vj) = 2, respectively, due to the
censoring effect.

Final-Loss: Combining all the losses, we can design our final objective L to
train our SurvRev model. Thus,

arg min
θ

L = arg min
θ

Luc−nll · Luc−rmse · Luc−c−ce · Luc−c−rank, (11)

where θ denotes a model parameter of SurvRev. We used the product loss to
benefit from all the losses and reduce the weight parameters among the losses.

3 Experiments

To prove the efficacy of our model, we performed various experiments using a
real-world in-store mobility dataset collected by Walkinsights. After introducing
the tuned parameter values of the SurvRev model, we summarized the evaluation
metrics required for performing revisit prediction (see Sect. 3.1). In addition, we
demonstrate the superiority of our SurvRev model by comparison with seven
different baseline event prediction models (see Sect. 3.2).

3.1 Settings

Data Preparation: We used a Wi-Fi fingerprinted dataset introduced in [9],
which represents customer mobility captured using dozens of in-store sensors in
flagship offline retail stores located in Seoul. We selected four stores that had
collected data for more than 300 days from Jan 2017. We consider each store inde-
pendently, only a few customer overlaps occurred among the stores. We randomly
selected 50,000 customers that had visits longer than 1 min, which is a sufficiently
large number of customers to guarantee satisfactory model performance accord-
ing to [10]. If a customer reappears within 10 min, we do not consider that partic-
ular subsequent visit as a new visit. We also designed several versions of training
and testing sets by varying the training length to 180 and 240 days. Table 1 lists
several statistics of the datasets used, where Vtr, Vtef , and Vtep denote the uncen-
sored training set, testing set with first-time visitors, and testing set with partial
observations who appeared in the training periods but censored, respectively.
Observe the considerable difference of both average revisit rate E[RVbin(v)] and
average revisit interval E[RVdays(v)] among the three subsets.

Hyperparameter Settings: The embedding dimension was set to be 64 for
both area embeddings and user embeddings. A set of new IDs and that of new
areas in the testing set were mapped to [unk] and, subsequently, embedded to
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Table 1. Statistics of the datasets.

Store ID A B C D

Number of sensors 14 11 22 40

Data length (days) 365 365 312 300

Training length (days) 180 240 180 240 180 240 180 240

|Vtr| 39,473 49,987 45,051 57,961 50,898 67,745 35,259 48,550

|Vtef | 24,166 11,403 25,664 12,963 22,991 7,494 20,907 8,260

|Vtep| 31,409 38,179 29,511 36,193 32,208 40,474 28,069 37,562

E[RVbin(vtr)] 0.204 0.236 0.345 0.376 0.367 0.403 0.204 0.226

E[RVbin(vtef )] 0.204 0.140 0.285 0.183 0.233 0.112 0.116 0.053

E[RVbin(vtep)] 0.191 0.146 0.203 0.152 0.223 0.126 0.115 0.058

E[RVdays(vtr)] 38.7 52.5 26.4 34.2 31.0 37.4 33.9 40.9

E[RVdays(vtef )] 45.7 30.0 30.2 15.2 30.6 17.2 28.3 13.4

E[RVdays(vtep)] 165.2 159.8 137.1 129.6 109.6 103.2 107.0 104.2

default values. For the low-level module, the 64-dim Bi-LSTM unit was used. The
kernel size of CNN was 3 with 16-dim filters, and the number of neurons in the FC
layer was 128. We used only one dense layer. For a visit with a long sequence,
we considered m areas that could cover up to 95% of all the cases, where m
depends on each dataset. In the high-level module, the dynamic LSTM had 256-
dim units and processed up to 5 events. We used two layers of LSTM with tanh
activation. For the rate predictor, we used two FC layers with 365 neurons and
ReLU activation. For training the model, we used Adam [11] optimizer with the
learning rate of 0.001. We set the mini-batch size to be 32 and ran 10 epochs.
The NLL loss Luc−nll was set as the average of Luc−nll−season and Luc−nll−month.
Some of these hyperparameters were selected empirically via grid search.

Input Settings: We made a switch to control the number of user histories
to be used while training the SurvRev model. For predicting partially-observed
instances (vtep), all the histories up to the observation time were used to train the
model. For instance, if an input visit v5 is a partial observation, then {v1, · · · , v5}
and tsupp(v5) are fed in the high-level event-rate predictor. For predicting first-
time visitors, only the first appearances (v1 ∈ Vtrain) were used to train the
model. In the latter case, the LSTM length in a high-level event-rate predictor
is always one because each training instance has no prior log.

Evaluation Metrics: We used two metrics, namely, F-score and c-index, to
evaluate the prediction performance.

– F-score: F-score measures the binary revisit classification performance.
– C-index [14]: C-index measures the global pairwise ordering performance, and

it is the most generally used evaluation metric in survival analysis [13,15].



Revisit Prediction by Deep Survival Analysis 523

3.2 Results

Comparison with Baselines: We verify the effectiveness of our SurvRev model
on the large-scale in-store mobility data. To compare our method with various
baseline methods, we implemented eight different event-prediction models.

Baselines Not Considering Covariates: The first three baselines focus on the
distribution of revisit labels and consider them an arrival process. They do not
consider the attributes, i.e., covariates, obtained from each visit.

– Majority Voting (Majority): Prediction results are dictated by the majority
class for classification, which depends on the average values of regression; this
baseline is a naive but powerful method for an imbalanced dataset.

– Personalized Poisson Process (Poisson) [16]: We assume that the inter-arrival
time of customers follows the exponential distribution with a constant λ. To
make it personalized, we control λ for each customer by considering his or
her visit frequency and observation time.

– Personalized Hawkes Process (Hawkes) [5]: It is an extended version of the
Poisson process, and it includes self-stimulation and time-decaying rate λ.

Baselines Considering Covariates: The following two models considered the
covariates derived from each visit. For ensuring fairness, we used the same set
of handcrafted features for the latter baseline.

– Cox Proportional Hazard model (Cox-PH) [3]: It is a semi-parametric survival
analysis model with proportional hazards assumption.

– Gradient Boosting Tree with Handcrafted Features (XGBoost) [9]: It uses care-
fully designed handcrafted features with XGBoost classifier [2].

Baselines Using Deep Survival Analysis: The last two models are state-of-the-art
survival analysis models that applied deep learning.

– Neural Survival Recommender (NSR) [8]: It is a deep multi-task learning
model with LSTM and three-way factor unit used for music subscription
data with sequential events. However, the disadvantage of this model is that
the input for each cell is simple, and the input does not consider lower-level
interactions.

– Deep Recurrent Survival Analysis (DRSA) [15]: It is an auto-regressive model
with LSTM. Each cell emits a hazard rate for each timestamp. However, the
drawback of this model is that each LSTM considers only a single event.
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Table 2. Superiority of SurvRev compared to baselines, evaluated on partial observa-
tions. We highlighted in bold the cases where SurvRev shows the best performance.

Model Store A Store B Store C

Majority 0.500 0.500 0.500

Poisson 0.528 0.591 0.582

Hawkes 0.530 0.593 0.580

XGBoost 0.420 0.597 0.549

NSR 0.497 0.497 0.523

DRSA 0.500 0.500 0.500

SurvRev 0.561 0.672 0.647

(a) C-index (180 days).

Model Store A Store B Store C

Majority 0.500 0.500 0.500

Poisson 0.552 0.622 0.617

Hawkes 0.549 0.624 0.613

XGBoost 0.667 0.568 0.830

NSR 0.509 0.513 0.504

DRSA 0.500 0.500 0.501

SurvRev 0.606 0.726 0.702

(b) C-index (240 days).

Table 3. Superiority of SurvRev compared to baselines, evaluated on first-time visitors.

Model Store A Store B Store C

Majority 0.000 0.000 0.000

Poisson 0.244 0.302 0.244

Hawkes 0.242 0.304 0.241

Cox-ph 0.286 0.353 0.000

XGBoost 0.236 0.317 0.097

NSR 0.000 0.000 0.000

DRSA 0.298 0.360 0.277

SurvRev 0.315 0.373 0.295

(a) F-score (180 days).

Model Store A Store B Store C

Majority 0.000 0.000 0.000

Poisson 0.214 0.275 0.204

Hawkes 0.212 0.276 0.209

Cox-ph 0.000 0.000 0.000

XGBoost 0.025 0.194 0.000

NSR 0.000 0.000 0.000

DRSA 0.245 0.300 0.223

SurvRev 0.272 0.307 0.263

(b) F-score (240 days).

Comparison Results: Tables 2 and 3 summarize the performance of each model
on partially observed customers (Vtep) and first-time visitors (Vtef ), respectively.
The prediction results on the partially observed set shows that SurvRev outper-
forms other baselines in terms of the c-index, in most cases. In addition, regarding
first-time visitors, SurvRev outperforms other baselines in terms of the f-score.
As a preliminary result, it is fairly satisfying to observe that our model showed
its effectiveness on two different settings. However, we might need to further tune
our model parameters to achieve the best results for every evaluation metric.

Ablation Studies: Throughout ablation studies, we expect to observe the effec-
tiveness of the components of both the low-level encoder and high-level event-
rate predictor. The variations in both low-level encoders (L1–L6) and high-level
event-rate predictors (H1–H2) are as follows:

Ablation by simplifying the low-level module:

– L1 (Bi-LSTM+ATT ): Use only two layers to represent the visit.
– L2 (CNN+ATT ): Use only CNN and attention layers to represent the visit.
– L3 (Bi-LSTM+CNN+AvgPool): Substitute an attention layer to pooling.
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– L4 (Bi-LSTM+CNN+ATT ): Use only area sequence information.
– L5 (Bi-LSTM+CNN+ATT+UserID): Add user embedding results to L4.
– L6 (Bi-LSTM+CNN+ATT+UserID+FE ): Add handcrafted features to L5.

This one is equivalent to our original low-level encoder described in Sect. 2.2.

Ablation by simplifying the high-level module:

– H1 (FC+FC ): Concatenate the outputs of the low-level encoder and, subse-
quently, apply an FC layer instead of LSTMs.

– H2 (LSTM+FC ): Stack the outputs of the low-level encoder and, subse-
quently, apply two-level LSTM layers. This one is equivalent to our original
high-level event-rate predictor described in Sect. 2.3.

Figure 3 depicts the results of the ablation study. The representative c-index
results are evaluated on a partially-observed set of store D with 240-day train-
ing interval. The results show that the subcomponents of both the low-level
visit encoder and the high-level event-rate predictor are critical to designing the
SurvRev architecture.
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Fig. 3. Ablation studies of the SurvRev model.

4 Conclusion

In this study, we proposed the SurvRev model for customer-revisit prediction.
In summary, our SurvRev model successfully predicted customer revisit rates
for the next time horizon by encoding each visit and managing the personal-
ized history of each customer. Upon applying survival analysis with deep learn-
ing, we could easily analyze both first-time visitors and partially-observed cus-
tomers with inconsistent arrival behaviors. In addition, SurvRev did not involve
any parametric assumption. Through comparison with various event-prediction
approaches, SurvRev proved effective by realizing several prediction objectives.
For future work, we would like to extend SurvRev to other prediction tasks that
suffer from partial observations and sessions with multilevel sequences.
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