

Ph.D. Thesis Defense

# **Revisit Prediction Using Customer Mobility Data**

Sundong Kim

Graduate School of Knowledge Service Engineering KAIST

May 16, 2019

# **Thesis Committee**

- Prof. Jae-Gil Lee (Chair)
- Prof. Mun Yong Yi
- Prof. Kyoung-Kuk Kim
- Prof. Young-Jae Jang
- Prof. Meeyoung Cha

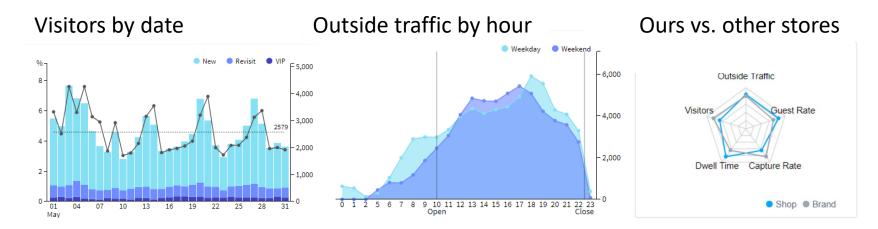


#### **Capturing Customer Mobility**



# What Retail Analytics Do & Want

- Provide a dashboard, as well as consultancy services
- Use the collected information to change the store



- To increase the long-term profit and revenue
- To increase the customer lifetime value

→ Securing new customers + Keep existing customers

#### However, more than 70% of visits are from first-time visitors and their revisit rate is only 15%.

#### **Revisit Prediction**

• Retaining customers is very important. (5%  $\rightarrow$  25-95%(\$), 65% rule) Forbes Billionaires Innovation Leadership Money

8,155 views | Sep 12, 2018, 05:03pm

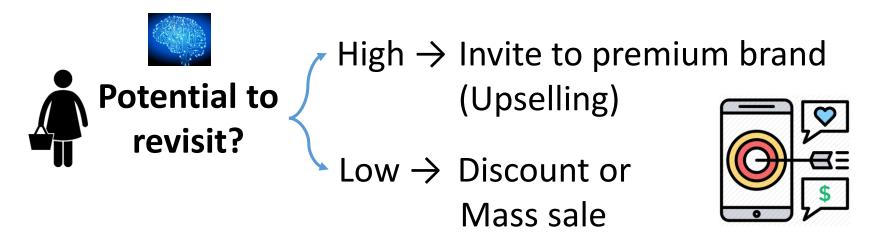
Don't Spend 5 Times More Attracting New Customers, Nurture The Existing Ones

We have monitored customer mobility. Can we contribute by providing a solution to revisit prediction?

utt 🌣 💥 vimeo

# **Application in Business**

"Revisit Prediction for Targeted Marketing"



- Expect to observe higher customer lifetime value.
- Feasible strategy if a company has a whole pipeline from data acquisition to marketing service

#### → Knowing the potential characteristics is very important.

#### **Thesis Goal and Focus**

#### To Discover the Relation between Customer Revisit and their Mobility

#### **Our Focus:** To Better Predict **Customer Revisit** by

- T1. Finding Effective Attributes by Feature Engineering
- T2. Handling Partial Observations by **Deep Survival Analysis**

# **Revision Summary**

- Provide preprocessing details (pp. 12–15)
- Strengthen related work: (pp. 9–12, pp. 49–53)
- Comparison between diverse exp. settings: (p. 29)
- Model parameters: (p. 35)
- Exp. on data collection period: (pp. 39-40)
- Provide reasoning on first-time visitors: (p. 42)
- New methodology: (pp. 46-67)
- Exploratory data analysis: (pp. 71–76)

### Outline

- Introduction
- T1. Revisit Prediction By Feature Engineering <<
- T2. Revisit Prediction By Deep Survival Analysis
- Conclusion

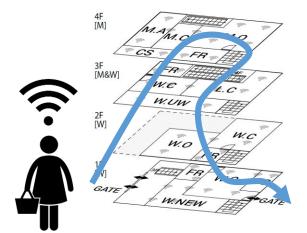
## **T1. Feature Engineering**

"To find the effective attributes to determine customer revisit from their mobility"

- Data: Customer mobility data captured in seven stores
- Findings:
  - Ten groups of handcrafted features  $\checkmark$
  - Performance improvement by utilizing indoor trajectories  $\checkmark$
  - Predictive powers of each feature groups
  - Predictive powers by collecting longer period
  - Robustness on missing data  $\checkmark$
  - LGB—Fast and high performance classifier ✓

#### **Mobility Data from In-Store Sensors**

- 7 Flagship stores
- 110K-2M visits/store
- 220-990 days collected
- Avg. traj length = 6.56



| Shop ID        | A_GN   | A_MD         | E_GN   | E_SC   | L_GA   | L_MD   | O_MD   |  |
|----------------|--------|--------------|--------|--------|--------|--------|--------|--|
| Location       |        | Seoul, Korea |        |        |        |        |        |  |
| Length (days)  | 222    | 220          | 300    | 373    | 990    | 747    | 698    |  |
| # sensors      | 16     | 27           | 40     | 22     | 14     | 11     | 27     |  |
| Data size      | 15GB   | 77GB         | 148GB  | 99GB   | 164GB  | 242GB  | 567GB  |  |
| # visits > 60s | 0.11M  | 0.33M        | 0.18M  | 0.27M  | 1.06M  | 1.72M  | 2.01M  |  |
| Revisit rate   | 11.73% | 31.99%       | 21.18% | 36.55% | 21.22% | 32.98% | 48.73% |  |

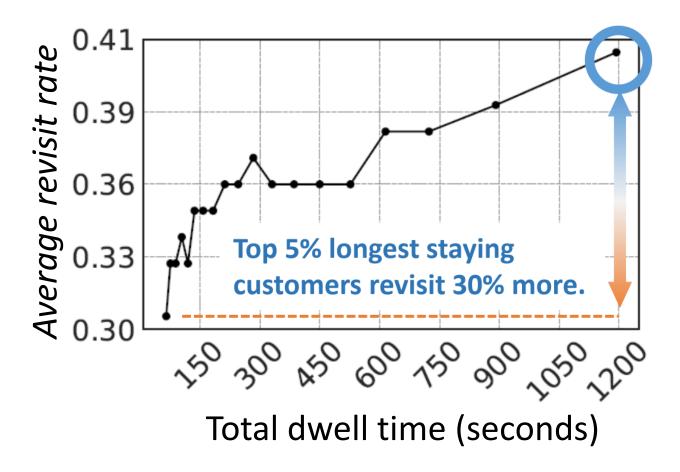
#### **Feature Groups**

- Overall statistics
- Travel distance/speed/acceleration
- Area preference
- Entrance and exit pattern
- Heuristics
- Statistics of each area
- Store accessibility ✓
- Group movement
- Time of visit
- Upcoming events 🗸

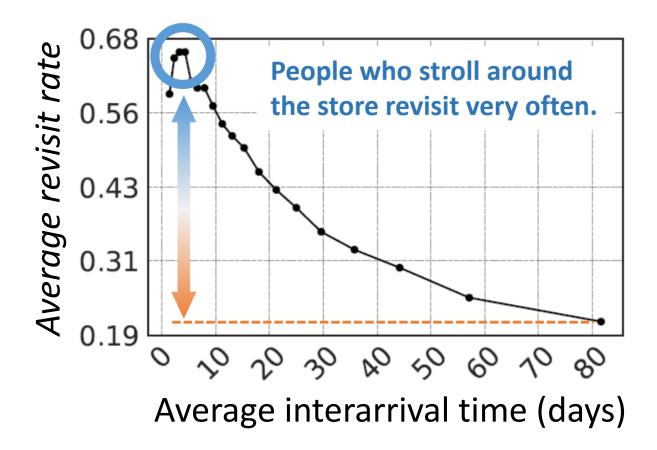
**Motion pattern** 

#### Temporal Information

#### **Total Dwell Time**



#### **Store Accessibility**



#### "Sale" for First-Time Visitors

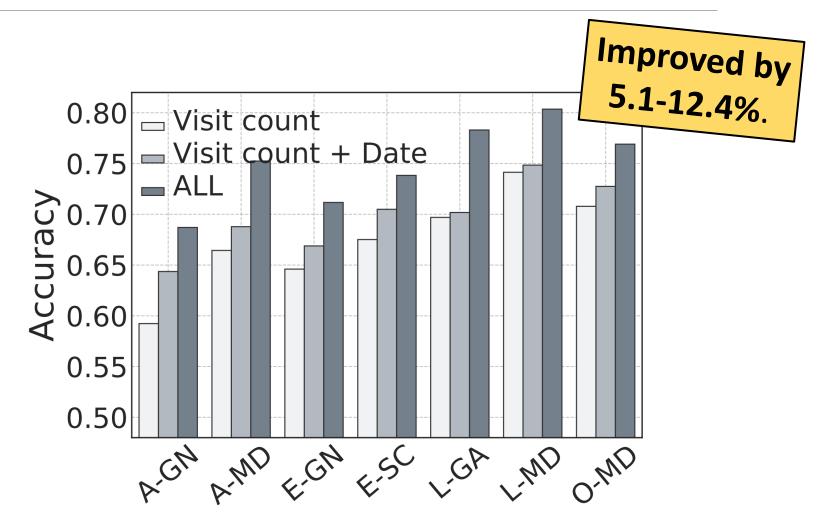


#### **On Customer Groups**

| Store ID | A_GN  | A_MD  | E_GN  | E_SC  | L_GA  | L_MD  | O_MD  |
|----------|-------|-------|-------|-------|-------|-------|-------|
| # visits |       |       |       |       |       |       |       |
| $v_1$    | 0.661 | 0.741 | 0.681 | 0.716 | 0.763 | 0.778 | 0.758 |
| $v_2$    | 0.732 | 0.735 | 0.716 | 0.691 | 0.795 | 0.773 | 0.706 |
| $v_3$    | 0.824 | 0.786 | 0.791 | 0.751 | 0.840 | 0.848 | 0.757 |
| $v_4$    | 0.856 | 0.808 | 0.845 | 0.800 | 0.848 | 0.879 | 0.801 |
| $v_5$    | -     | 0.803 | 0.865 | 0.831 | 0.847 | 0.885 | 0.820 |
| $v_6$    | -     | 0.810 | 0.884 | 0.852 | 0.846 | 0.883 | 0.829 |
| $v_7$    | -     | 0.808 | 0.907 | 0.861 | 0.856 | 0.879 | 0.834 |
| $v_8$    | -     | 0.814 | 0.911 | 0.866 | 0.836 | 0.878 | 0.838 |
| $v_9$    | -     | 0.802 | 0.903 | 0.875 | 0.863 | 0.874 | 0.837 |
| $v_{10}$ | -     | 0.789 | -     | 0.900 | 0.867 | 0.870 | 0.839 |
|          |       |       |       |       |       | Γ     | New c |
|          |       |       |       |       |       |       |       |

tS

#### **Comparison with Baselines**



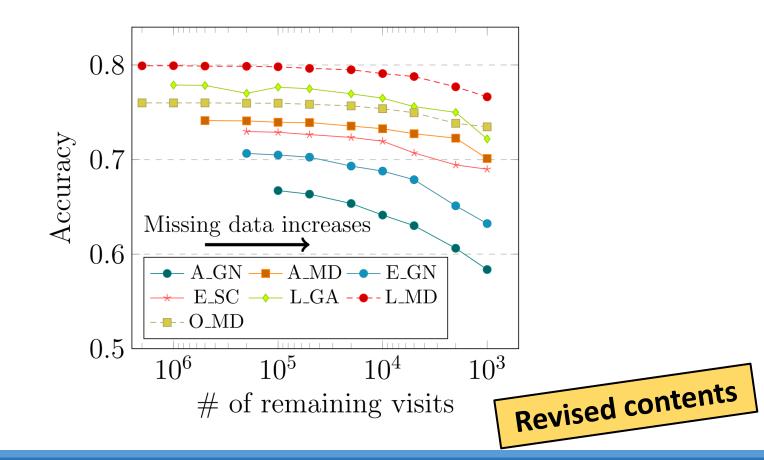
#### Comparison with Baselines on $v_i$

| Store ID | A_GN     | A_MD      | E_GN     | E_SC     | L_GA      | L_MD      | O_MD      |
|----------|----------|-----------|----------|----------|-----------|-----------|-----------|
| # visits |          |           |          |          |           |           |           |
| $v_1$    | 18.6/7.7 | 17.1/14.7 | 12.9/9.1 | 10.4/7.1 | 18.2/17.6 | 10.5/10.4 | 7.6/7.4   |
| $v_2$    | 4.9/1.2  | 13.5/5.0  | 7.5/2.0  | 15.1/3.1 | 4.6/3.0   | 18.4/12.5 | 29.7/13.0 |
| $v_3$    | 1.7/0.4  | 4.2/1.3   | 3.0/0.4  | 7.5/1.3  | 0.9/0.3   | 2.5/1.2   | 8.0/3.5   |
| $v_4$    | 1.3/0.3  | 3.5/0.5   | 2.8/1.1  | 5.5/0.7  | 1.0/0.1   | 0.9/0.2   | 3.7/1.0   |
| $v_5$    | -        | 3.2/0.3   | 1.3/-0.4 | 3.8/0.8  | 1.1/0.1   | 0.7/0.0   | 2.7/0.5   |
| $v_6$    | -        | 2.3/0.2   | 1.6/0.8  | 3.3/0.4  | 1.3/0.2   | 0.8/0.0   | 2.4/0.2   |
| $v_7$    | -        | 3.8/0.8   | 1.8/-0.1 | 2.7/1.0  | 1.3/0.3   | 0.8/0.0   | 2.2/0.2   |
| $v_8$    | -        | 4.0/-0.2  | 1.7/0.5  | 2.4/0.0  | 1.4/0.2   | 1.2/0.0   | 2.2/0.2   |
| $v_9$    | -        | 3.6/0.0   | 1.5/0.9  | 3.2/0.6  | 1.8/0.6   | 1.4/0.2   | 2.0/0.0   |
| $v_{10}$ | -        | 3.1/0.0   | -        | 2.1/0.2  | 0.9/0.2   | 1.6/-0.1  | 2.5/0.2   |

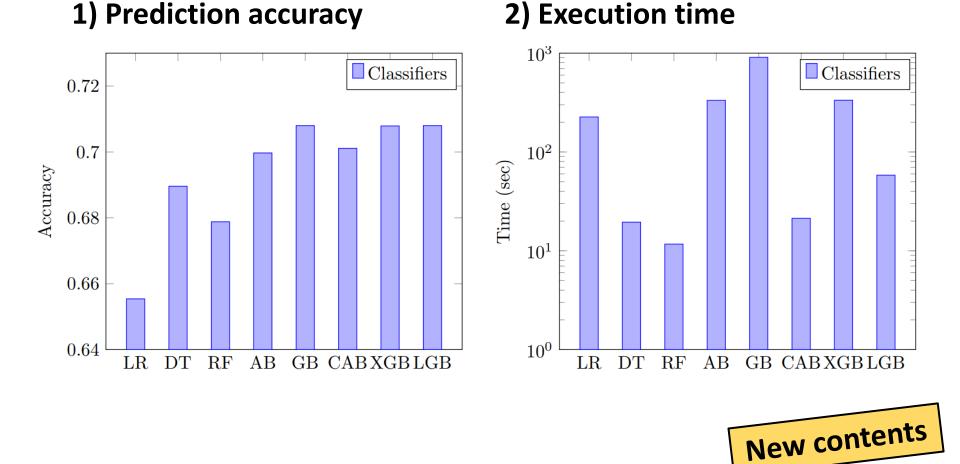


### **Robustness on Missing Customers**

 Over 95% of the performance is maintained with a very small fraction of the dataset (e.g., 0.5% for L\_MD)



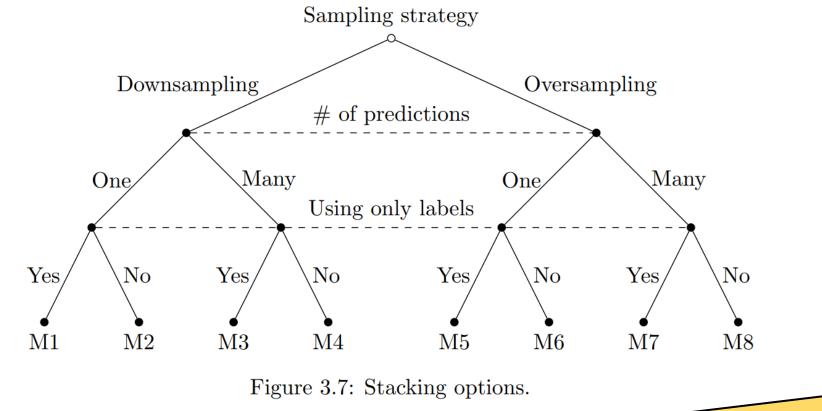
#### **Comparison Between Classifiers**



#### Introduction / Feature Engineering / Deep Survival Analysis / Conclusion

20/44

#### **Stacking Options**





### Outline

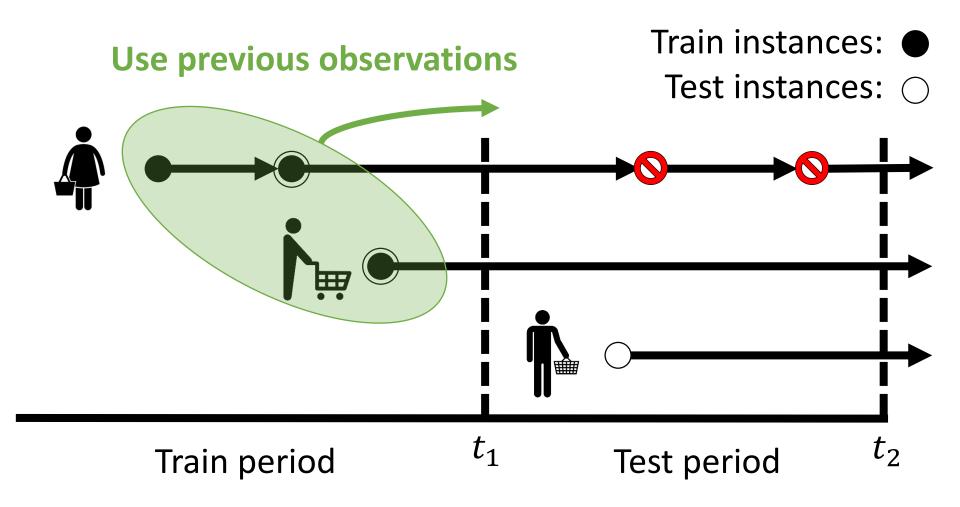
- Introduction
- T1. Revisit Prediction By Feature Engineering
- T2. Revisit Prediction By Deep Survival Analysis <<
- Conclusion

# **T2. Deep Survival Analysis**

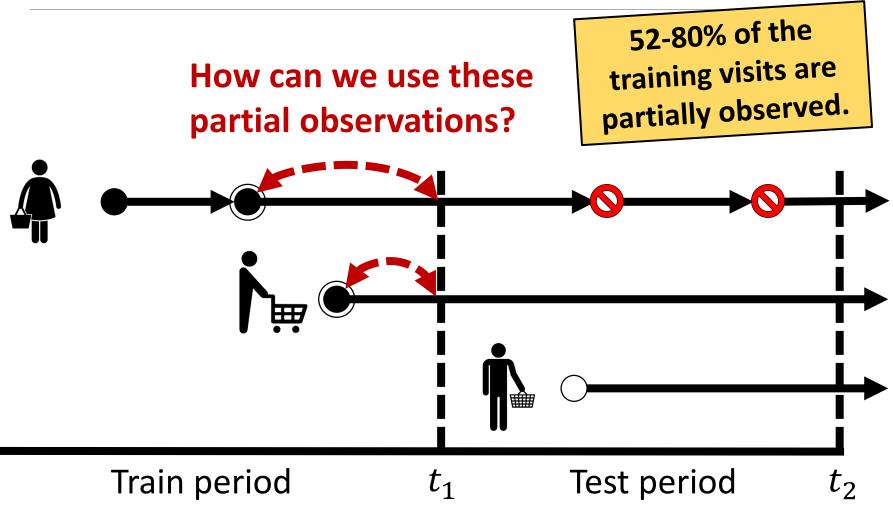
"To make the most of every observation by deep survival analysis"

- Focus: Handling partial observations
  - Have not been used for the regression task
  - Cause imbalanced class distribution
  - Include all first-time visitors, large portion of the datasets
- Findings:
  - Develop a model *SurvRev* powered by Survival analysis and Deep learning
  - Implement two modules to encode the visit and histories
  - Optimize custom loss functions to meet multiple objectives

#### **Prediction on Longitudinal Data**

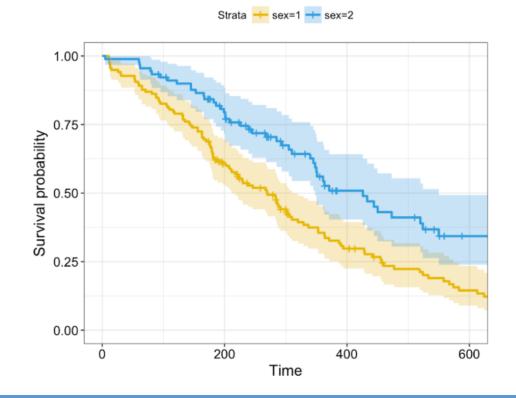


#### Motivation



### Survival Analysis – Purpose

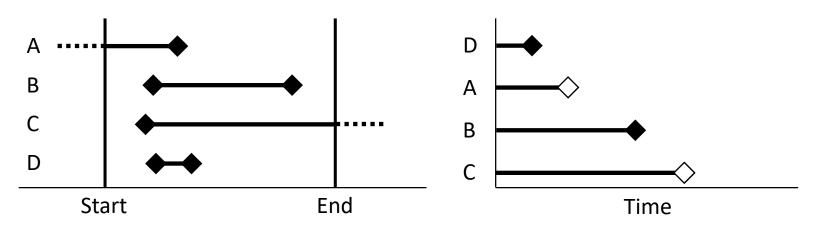
• To analyze the expected duration of time until one or more event happen, such as death, failure, marriage, next visit, etc.



Introduction / Feature Engineering / Deep Survival Analysis / Conclusion

### **Survival Analysis**

• Censoring:



#### • Analysis Issue:

- If there is no censoring, standard regression procedures could be used
- However, time to event is restricted to be positive, skewed distribution

#### **Survival Analysis – Notation**

Survival function

$$S(t) = \Pr(T > t) = 1 - F(t)$$

• Hazard function (= Event rate, Revisit rate)

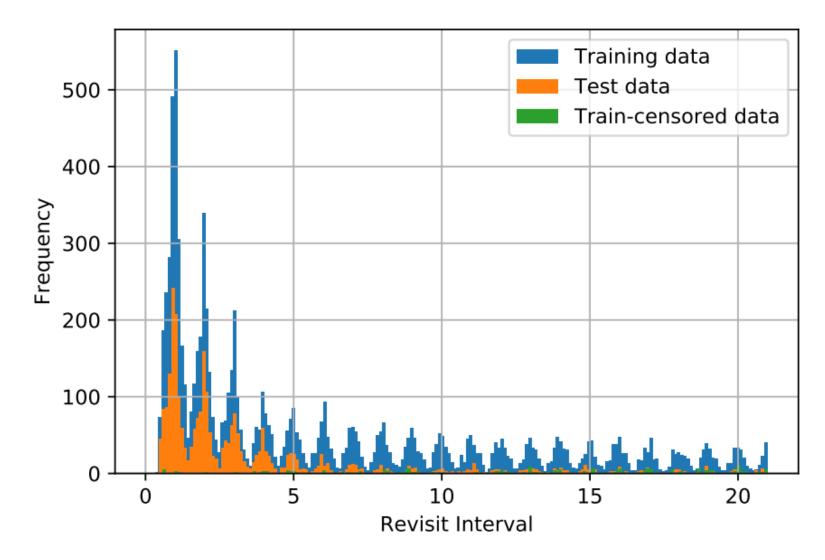
$$\lambda(t) = \lim_{dt \to 0} \frac{\Pr(t \le T < t + dt \mid T > t)}{dt} = \frac{f(t)}{S(t)}$$

f(t): Event density function F(t): Cumulative distribution function

# Estimating S(t) and $\lambda(t)$

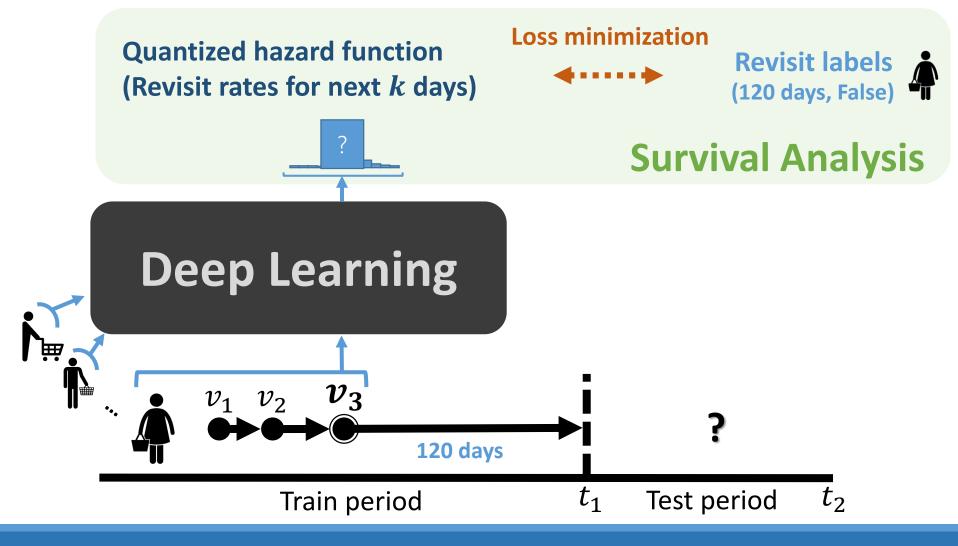
- Nonparametric estimators [Kaplan1958]:
  - If every subject follows the same survival function
- Parametric estimators:
  - Exponential
  - Weibull
- Semi-parametric estimators [Cox1972]:
  - $\lambda(t|\mathbf{x}) = \lambda_0(t)e^{\beta \mathbf{x}}$
  - The base hazard function has some assumption, e.g., Weibull distribution.

#### → Drawback: Not flexible in practice.

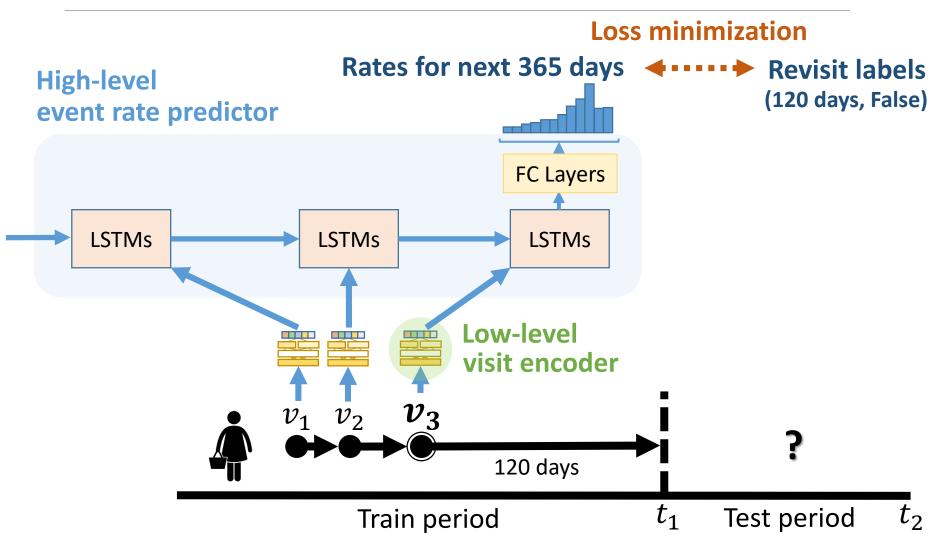


→ Drawback: Not flexible in practice.

#### How to Use SA and DL?



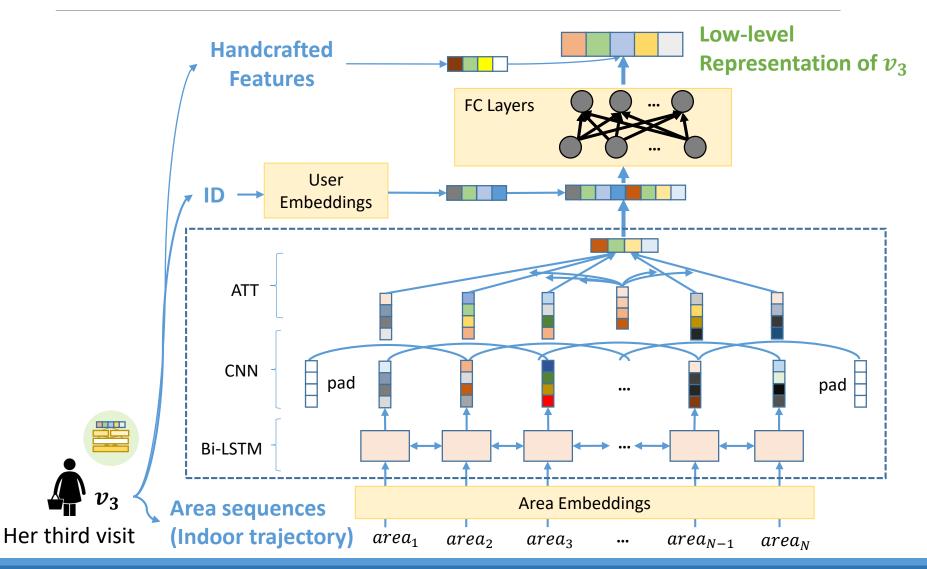
#### SurvRev Architecture



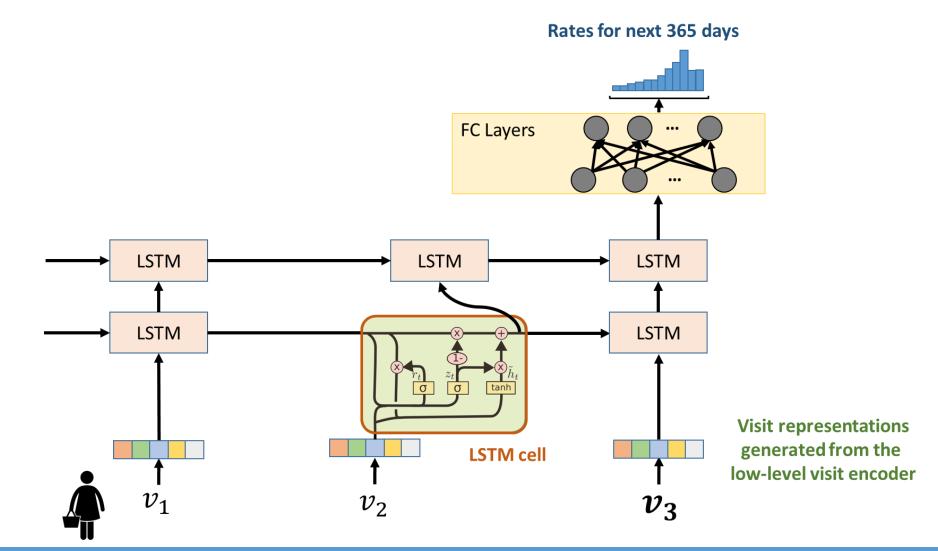
Introduction / Feature Engineering / Deep Survival Analysis / Conclusion

32/44

#### **Low-level Encoder**



#### **High-Level Event Rate Predictor**



#### **Loss Function**

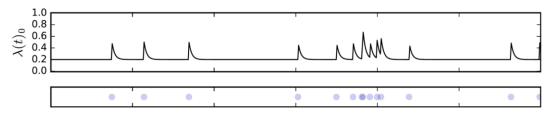
$$\mathcal{L} = \mathcal{L}_{nll} \cdot \mathcal{L}_{rmse} \cdot \mathcal{L}_{ce} \cdot \mathcal{L}_{rank}$$

- $\mathcal{L}_{nll}$ : Negative log-likelihood loss [Ren2019]
- *L<sub>rmse</sub>*: RMSE loss [Kim2018]
- $\mathcal{L}_{ce}$ : Cross-entropy loss [Ren2019]
- *L<sub>rank</sub>*: Pairwise ranking loss [Lee2018]

For uncensored cases
For all cases

# Related Work & Baselines (1)

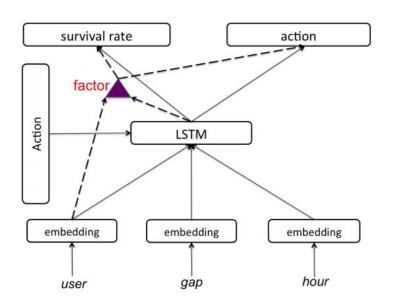
- Majority:
  - Prediction results follow the majority label or average value
- Poisson Process:
  - Interarrival times follows the exponential distribution
- Hawkes Process [Hawkes1971]:
  - Self-stimulating, exponentially decaying point process

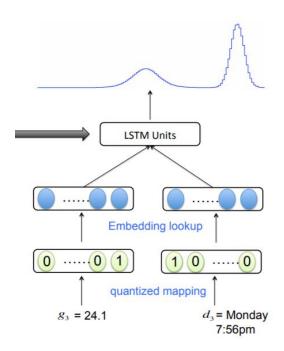


- Cox Proportional Hazard Model [Cox1972]
  - Semi-parametric statistical model

# Related Work & Baselines (2)

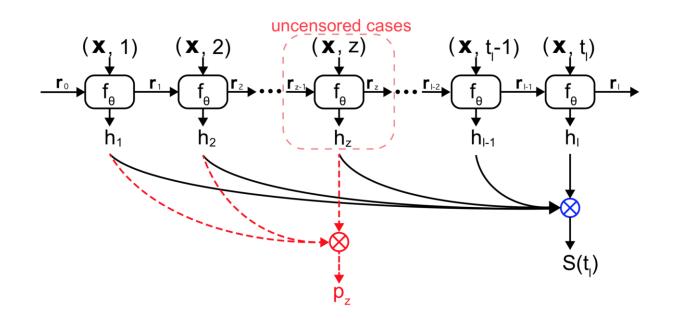
- Neural Survival Recommender [Jing2017]:
  - A deep multi-task learning model with LSTM and 3-way factor unit, used for churn analysis in music streaming
  - Did not consider lower-level interactions





## Related Work & Baselines (3)

- Deep Recurrent Survival Analysis [Ren2019]
  - An auto-regressive model
  - Each cell emits a hazard rate
  - Each LSTM considers only a single event



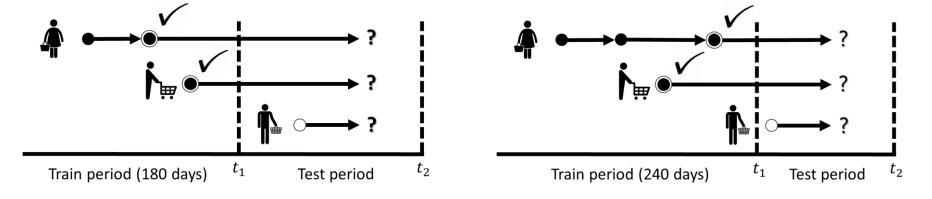
#### **Evaluation on Censored Customers**

#### C-index results (180 days).

|          | Store A | Store B | Store C | Store E |
|----------|---------|---------|---------|---------|
| Majority | 0.500   | 0.500   | 0.500   | 0.500   |
| Poisson  | 0.528   | 0.591   | 0.588   | 0.582   |
| Hawkes   | 0.530   | 0.593   | 0.588   | 0.580   |
| XGB      | 0.420   | 0.597   | 0.671   | 0.549   |
| NSR      | 0.497   | 0.497   | 0.480   | 0.523   |
| DRSA     | 0.500   | 0.500   | 0.499   | 0.500   |
| SurvRev  | 0.561   | 0.672   | 0.649   | 0.647   |

#### C-index results (240 days).

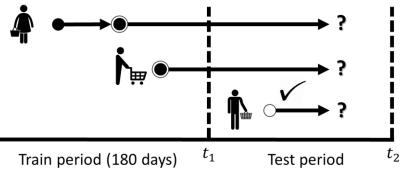
|          | Store A | Store B | Store E |
|----------|---------|---------|---------|
| Majority | 0.500   | 0.500   | 0.500   |
| Poisson  | 0.552   | 0.622   | 0.617   |
| Hawkes   | 0.549   | 0.624   | 0.613   |
| XGB      | 0.667   | 0.568   | 0.830   |
| NSR      | 0.509   | 0.513   | 0.504   |
| DRSA     | 0.500   | 0.500   | 0.501   |
| SurvRev  | 0.606   | 0.726   | 0.702   |



#### **Evaluation on New Customers**

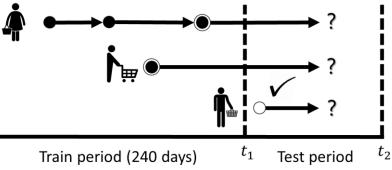
#### F-score results (180 days).

|          | Store A | Store B | Store C | Store E |
|----------|---------|---------|---------|---------|
| Majority | 0.000   | 0.000   | 0.000   | 0.000   |
| Poisson  | 0.244   | 0.302   | 0.415   | 0.244   |
| Hawkes   | 0.242   | 0.304   | 0.412   | 0.241   |
| Cox-ph   | 0.286   | 0.353   | 0.176   | 0.000   |
| XGB      | 0.236   | 0.317   | 0.248   | 0.097   |
| NSR      | 0.000   | 0.000   | 0.000   | 0.000   |
| DRSA     | 0.298   | 0.360   | 0.461   | 0.277   |
| SurvRev  | 0.315   | 0.373   | 0.458   | 0.295   |



#### F-score results (240 days).

| Store A | Store B                                                     | Store E                                                                                                                                                                                                 |
|---------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.000   | 0.000                                                       | 0.000                                                                                                                                                                                                   |
| 0.214   | 0.275                                                       | 0.204                                                                                                                                                                                                   |
| 0.212   | 0.276                                                       | 0.209                                                                                                                                                                                                   |
| 0.000   | 0.000                                                       | 0.000                                                                                                                                                                                                   |
| 0.025   | 0.194                                                       | 0.000                                                                                                                                                                                                   |
| 0.000   | 0.000                                                       | 0.000                                                                                                                                                                                                   |
| 0.245   | 0.300                                                       | 0.223                                                                                                                                                                                                   |
| 0.272   | 0.307                                                       | 0.263                                                                                                                                                                                                   |
|         | 0.000<br>0.214<br>0.212<br>0.000<br>0.025<br>0.000<br>0.245 | 0.000         0.000           0.214         0.275           0.212         0.276           0.000         0.000           0.025         0.194           0.000         0.000           0.245         0.300 |

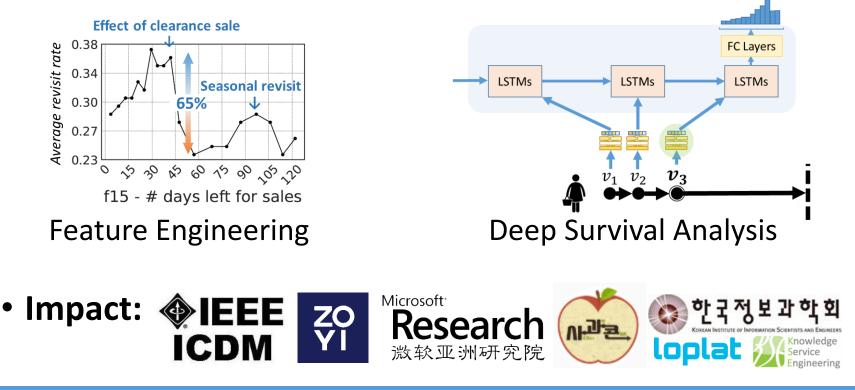


### Outline

- Introduction
- T1. Revisit Prediction By Designing Features
- T2. Revisit Prediction By Designing a Model
- Conclusion <</li>

### Conclusion

- Goal: To discover the relation between Customer Revisit and their Mobility
- Contributions: Developed two prediction approaches



#### Reference

- [Kim2018] S. Kim and J.-G. Lee, "Utilizing in-store sensors for revisit prediction," in *IEEE International Conference on Data Mining*. IEEE, 2018, pp. 217–226.
- [Kim2019] S. Kim and J.-G. Lee, "A systemic framework of predicting customer revisit with in-store sensors," in *Knowledge and Information Systems (To Appear)*. Springer, 2019.
- **[Kaplan1958]** E. L. Kaplan and P. Meier, "Nonparametric estimation from incomplete observations," *Journal of the American Statistical Association*, vol. 35, pp. 457–481, 1958.
- [Hawkes1971]: A. G. Hawkes, "Spectra of some self-exciting and mutually exciting point processes," Biometrika, vol. 58, no. 1, pp. 83–90, 1971.
- **[Cox1972]:**D. R. Cox, "Regression models and life-tables," *Journal of the Royal Statistical Society. Series B (Methodological)*, vol. 34, no. 2, pp. 187–220, 1972.
- [Jing2017] H. Jing and A. J. Smola, "Neural survival recommender," in *The 10th ACM International Conference on Web Search and Data Mining*. ACM, 2017, pp. 495–503.
- **[Lee2018]** C. Lee, W. R. Zame, J. Yoon, and M. van der Schaar, "DeepHit: A deep learning approach to survival analysis with competing risks," in *The 32nd AAAI Conference on Artificial Intelligence*. AAAI Press, 2018.
- [Ren2019] K. Ren, J. Qin, L. Zheng, Z. Yang, W. Zhang, L. Qiu, and Y. Yu, "Deep recurrent survival analysis," in *The 33rd AAAI Conference on Artificial Intelligence*. AAAI Press, 2019.

# Thank you!

Revisit Prediction Using Customer Mobility Data (by Sundong Kim)

44/44